Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C4

Direct product G=N×Q with N=C2×C4 and Q=C4
dρLabelID
C2×C4232C2xC4^232,21

Semidirect products G=N:Q with N=C2×C4 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊C4 = C23⋊C4φ: C4/C1C4 ⊆ Aut C2×C484+(C2xC4):C432,6
(C2×C4)⋊2C4 = C2.C42φ: C4/C2C2 ⊆ Aut C2×C432(C2xC4):2C432,2
(C2×C4)⋊3C4 = C2×C4⋊C4φ: C4/C2C2 ⊆ Aut C2×C432(C2xC4):3C432,23
(C2×C4)⋊4C4 = C42⋊C2φ: C4/C2C2 ⊆ Aut C2×C416(C2xC4):4C432,24

Non-split extensions G=N.Q with N=C2×C4 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C4).C4 = C4.10D4φ: C4/C1C4 ⊆ Aut C2×C4164-(C2xC4).C432,8
(C2×C4).2C4 = C8⋊C4φ: C4/C2C2 ⊆ Aut C2×C432(C2xC4).2C432,4
(C2×C4).3C4 = C22⋊C8φ: C4/C2C2 ⊆ Aut C2×C416(C2xC4).3C432,5
(C2×C4).4C4 = C4⋊C8φ: C4/C2C2 ⊆ Aut C2×C432(C2xC4).4C432,12
(C2×C4).5C4 = M5(2)φ: C4/C2C2 ⊆ Aut C2×C4162(C2xC4).5C432,17
(C2×C4).6C4 = C2×M4(2)φ: C4/C2C2 ⊆ Aut C2×C416(C2xC4).6C432,37

׿
×
𝔽