p-group, metacyclic, nilpotent (class 2), monomial
Aliases: C8⋊3C4, C42.1C2, C2.2C42, C2.1M4(2), (C2×C8).7C2, (C2×C4).2C4, C4.11(C2×C4), C22.7(C2×C4), (C2×C4).31C22, SmallGroup(32,4)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊C4
G = < a,b | a8=b4=1, bab-1=a5 >
Character table of C8⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | i | -i | i | -1 | 1 | -i | 1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | i | -i | -i | i | i | -1 | -1 | 1 | -i | i | 1 | -i | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | 1 | -i | i | -i | 1 | -1 | i | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | i | -i | -i | i | -i | 1 | 1 | -1 | i | -i | -1 | i | linear of order 4 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | 1 | i | -i | i | 1 | -1 | -i | -1 | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -i | i | i | -i | -i | -1 | -1 | 1 | i | -i | 1 | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -i | i | -i | -1 | 1 | i | 1 | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -i | i | i | -i | i | 1 | 1 | -1 | -i | i | -1 | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ17 | 2 | -2 | -2 | 2 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ18 | 2 | 2 | -2 | -2 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ19 | 2 | -2 | -2 | 2 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | 2 | -2 | -2 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10 32 19)(2 15 25 24)(3 12 26 21)(4 9 27 18)(5 14 28 23)(6 11 29 20)(7 16 30 17)(8 13 31 22)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,32,19)(2,15,25,24)(3,12,26,21)(4,9,27,18)(5,14,28,23)(6,11,29,20)(7,16,30,17)(8,13,31,22)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,32,19)(2,15,25,24)(3,12,26,21)(4,9,27,18)(5,14,28,23)(6,11,29,20)(7,16,30,17)(8,13,31,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10,32,19),(2,15,25,24),(3,12,26,21),(4,9,27,18),(5,14,28,23),(6,11,29,20),(7,16,30,17),(8,13,31,22)]])
C8⋊C4 is a maximal subgroup of
C42.C22 C42.2C22 C42.6C4 C42.7C22 C8⋊9D4 SD16⋊C4 Q16⋊C4 D8⋊C4 C8.26D4 C8⋊4Q8 C42.28C22 C42.29C22 C42.30C22 C8⋊3D4 C8.2D4 C8⋊Q8 (C3×C24)⋊C4 C32⋊2C8⋊C4
C8p⋊C4: C16⋊C4 C24⋊C4 C40⋊8C4 C8⋊F5 C56⋊C4 C88⋊C4 C104⋊8C4 C104⋊C4 ...
C2p.C42: C4×M4(2) C8○2M4(2) C42.S3 C42.D5 C10.C42 C42.D7 C42.D11 C26.7C42 ...
C8⋊C4 is a maximal quotient of
C22.7C42 (C3×C24)⋊C4 C32⋊2C8⋊C4
C8p⋊C4: C16⋊C4 C24⋊C4 C40⋊8C4 C8⋊F5 C56⋊C4 C88⋊C4 C104⋊8C4 C104⋊C4 ...
C2p.M4(2): C8⋊C8 C42.S3 C42.D5 C10.C42 C42.D7 C42.D11 C26.7C42 C26.C42 ...
Matrix representation of C8⋊C4 ►in GL3(𝔽17) generated by
13 | 0 | 0 |
0 | 5 | 10 |
0 | 9 | 12 |
13 | 0 | 0 |
0 | 13 | 15 |
0 | 16 | 4 |
G:=sub<GL(3,GF(17))| [13,0,0,0,5,9,0,10,12],[13,0,0,0,13,16,0,15,4] >;
C8⋊C4 in GAP, Magma, Sage, TeX
C_8\rtimes C_4
% in TeX
G:=Group("C8:C4");
// GroupNames label
G:=SmallGroup(32,4);
// by ID
G=gap.SmallGroup(32,4);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,20,181,46,72]);
// Polycyclic
G:=Group<a,b|a^8=b^4=1,b*a*b^-1=a^5>;
// generators/relations
Export
Subgroup lattice of C8⋊C4 in TeX
Character table of C8⋊C4 in TeX