Copied to
clipboard

G = C2×C4⋊C4order 32 = 25

Direct product of C2 and C4⋊C4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C4⋊C4, C22.3Q8, C22.13D4, C22.5C23, C23.13C22, C42(C2×C4), (C2×C4)⋊3C4, C2.2(C2×D4), C2.1(C2×Q8), C2.2(C22×C4), (C2×C4).9C22, (C22×C4).3C2, C22.10(C2×C4), SmallGroup(32,23)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2×C4⋊C4
C1C2C22C23C22×C4 — C2×C4⋊C4
C1C2 — C2×C4⋊C4
C1C23 — C2×C4⋊C4
C1C22 — C2×C4⋊C4

Generators and relations for C2×C4⋊C4
 G = < a,b,c | a2=b4=c4=1, ab=ba, ac=ca, cbc-1=b-1 >

2C4
2C4
2C4
2C4
2C2×C4
2C2×C4
2C2×C4
2C2×C4

Character table of C2×C4⋊C4

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L
 size 11111111222222222222
ρ111111111111111111111    trivial
ρ21111-1-1-1-11-1-11-111-1-11-11    linear of order 2
ρ31111-1-1-1-11-11-11-11-11-11-1    linear of order 2
ρ41111111111-1-1-1-111-1-1-1-1    linear of order 2
ρ511111111-1-111-1-1-1-111-1-1    linear of order 2
ρ61111-1-1-1-1-11-111-1-11-111-1    linear of order 2
ρ71111-1-1-1-1-111-1-11-111-1-11    linear of order 2
ρ811111111-1-1-1-111-1-1-1-111    linear of order 2
ρ91-1-11-11-11-11-iii-i1-1i-i-ii    linear of order 4
ρ101-1-111-11-1-1-1ii-i-i11-i-iii    linear of order 4
ρ111-1-111-11-111-i-i-i-i-1-1iiii    linear of order 4
ρ121-1-11-11-111-1i-ii-i-11-ii-ii    linear of order 4
ρ131-1-11-11-111-1-ii-ii-11i-ii-i    linear of order 4
ρ141-1-111-11-111iiii-1-1-i-i-i-i    linear of order 4
ρ151-1-111-11-1-1-1-i-iii11ii-i-i    linear of order 4
ρ161-1-11-11-11-11i-i-ii1-1-iii-i    linear of order 4
ρ172-22-222-2-2000000000000    orthogonal lifted from D4
ρ182-22-2-2-222000000000000    orthogonal lifted from D4
ρ1922-2-22-2-22000000000000    symplectic lifted from Q8, Schur index 2
ρ2022-2-2-222-2000000000000    symplectic lifted from Q8, Schur index 2

Smallest permutation representation of C2×C4⋊C4
Regular action on 32 points
Generators in S32
(1 7)(2 8)(3 5)(4 6)(9 24)(10 21)(11 22)(12 23)(13 17)(14 18)(15 19)(16 20)(25 30)(26 31)(27 32)(28 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 24 29)(2 18 21 32)(3 17 22 31)(4 20 23 30)(5 13 11 26)(6 16 12 25)(7 15 9 28)(8 14 10 27)

G:=sub<Sym(32)| (1,7)(2,8)(3,5)(4,6)(9,24)(10,21)(11,22)(12,23)(13,17)(14,18)(15,19)(16,20)(25,30)(26,31)(27,32)(28,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,24,29)(2,18,21,32)(3,17,22,31)(4,20,23,30)(5,13,11,26)(6,16,12,25)(7,15,9,28)(8,14,10,27)>;

G:=Group( (1,7)(2,8)(3,5)(4,6)(9,24)(10,21)(11,22)(12,23)(13,17)(14,18)(15,19)(16,20)(25,30)(26,31)(27,32)(28,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,24,29)(2,18,21,32)(3,17,22,31)(4,20,23,30)(5,13,11,26)(6,16,12,25)(7,15,9,28)(8,14,10,27) );

G=PermutationGroup([[(1,7),(2,8),(3,5),(4,6),(9,24),(10,21),(11,22),(12,23),(13,17),(14,18),(15,19),(16,20),(25,30),(26,31),(27,32),(28,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,24,29),(2,18,21,32),(3,17,22,31),(4,20,23,30),(5,13,11,26),(6,16,12,25),(7,15,9,28),(8,14,10,27)]])

C2×C4⋊C4 is a maximal subgroup of
C22.M4(2)  C22.4Q16  C22.C42  C23.7Q8  C428C4  C429C4  C23.8Q8  C23.63C23  C24.C22  C23.65C23  C24.3C22  C23.67C23  C23.10D4  C23.78C23  C23.Q8  C23.11D4  C23.81C23  C23.4Q8  C23.83C23  C23.36D4  M4(2)⋊C4  C22.D8  C23.46D4  C23.47D4  C23.48D4  C2×C4×D4  C2×C4×Q8  C23.33C23  C22.31C24  C22.33C24  C23.41C23  D46D4  C22.46C24  C22.47C24  D43Q8
C2×C4⋊C4 is a maximal quotient of
C23.7Q8  C428C4  C429C4  C23.8Q8  C23.65C23  C4⋊M4(2)  C42.6C22  C23.25D4  M4(2)⋊C4  M4(2).C4

Matrix representation of C2×C4⋊C4 in GL4(𝔽5) generated by

4000
0400
0010
0001
,
1000
0100
0004
0010
,
3000
0100
0003
0030
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,4,0],[3,0,0,0,0,1,0,0,0,0,0,3,0,0,3,0] >;

C2×C4⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_4\rtimes C_4
% in TeX

G:=Group("C2xC4:C4");
// GroupNames label

G:=SmallGroup(32,23);
// by ID

G=gap.SmallGroup(32,23);
# by ID

G:=PCGroup([5,-2,2,2,-2,2,80,101,46]);
// Polycyclic

G:=Group<a,b,c|a^2=b^4=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C2×C4⋊C4 in TeX
Character table of C2×C4⋊C4 in TeX

׿
×
𝔽