| d | ρ | Label | ID | ||
|---|---|---|---|---|---|
| S3×C6 | 12 | 2 | S3xC6 | 36,12 |
| extension | φ:Q→Aut N | d | ρ | Label | ID |
|---|---|---|---|---|---|
| C6⋊S3 = C2×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C6 | 18 | C6:S3 | 36,13 |
| extension | φ:Q→Aut N | d | ρ | Label | ID |
|---|---|---|---|---|---|
| C6.1S3 = Dic9 | φ: S3/C3 → C2 ⊆ Aut C6 | 36 | 2- | C6.1S3 | 36,1 |
| C6.2S3 = D18 | φ: S3/C3 → C2 ⊆ Aut C6 | 18 | 2+ | C6.2S3 | 36,4 |
| C6.3S3 = C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C6 | 36 | C6.3S3 | 36,7 | |
| C6.4S3 = C3×Dic3 | central extension (φ=1) | 12 | 2 | C6.4S3 | 36,6 |