Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C2

Direct product G=N×Q with N=C4×S3 and Q=C2
dρLabelID
S3×C2×C424S3xC2xC448,35

Semidirect products G=N:Q with N=C4×S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C2 = S3×D4φ: C2/C1C2 ⊆ Out C4×S3124+(C4xS3):1C248,38
(C4×S3)⋊2C2 = D42S3φ: C2/C1C2 ⊆ Out C4×S3244-(C4xS3):2C248,39
(C4×S3)⋊3C2 = Q83S3φ: C2/C1C2 ⊆ Out C4×S3244+(C4xS3):3C248,41
(C4×S3)⋊4C2 = C4○D12φ: C2/C1C2 ⊆ Out C4×S3242(C4xS3):4C248,37

Non-split extensions G=N.Q with N=C4×S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×S3).1C2 = S3×Q8φ: C2/C1C2 ⊆ Out C4×S3244-(C4xS3).1C248,40
(C4×S3).2C2 = C8⋊S3φ: C2/C1C2 ⊆ Out C4×S3242(C4xS3).2C248,5
(C4×S3).3C2 = S3×C8φ: trivial image242(C4xS3).3C248,4

׿
×
𝔽