Extensions 1→N→G→Q→1 with N=C4xS3 and Q=C2

Direct product G=NxQ with N=C4xS3 and Q=C2
dρLabelID
S3xC2xC424S3xC2xC448,35

Semidirect products G=N:Q with N=C4xS3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xS3):1C2 = S3xD4φ: C2/C1C2 ⊆ Out C4xS3124+(C4xS3):1C248,38
(C4xS3):2C2 = D4:2S3φ: C2/C1C2 ⊆ Out C4xS3244-(C4xS3):2C248,39
(C4xS3):3C2 = Q8:3S3φ: C2/C1C2 ⊆ Out C4xS3244+(C4xS3):3C248,41
(C4xS3):4C2 = C4oD12φ: C2/C1C2 ⊆ Out C4xS3242(C4xS3):4C248,37

Non-split extensions G=N.Q with N=C4xS3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xS3).1C2 = S3xQ8φ: C2/C1C2 ⊆ Out C4xS3244-(C4xS3).1C248,40
(C4xS3).2C2 = C8:S3φ: C2/C1C2 ⊆ Out C4xS3242(C4xS3).2C248,5
(C4xS3).3C2 = S3xC8φ: trivial image242(C4xS3).3C248,4

׿
x
:
Z
F
o
wr
Q
<