direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C2×C4, C12⋊3C22, C6.2C23, C22.9D6, D6.4C22, Dic3⋊3C22, C4○(C4×S3), C6⋊1(C2×C4), (C2×C12)⋊5C2, C3⋊1(C22×C4), (C2×C4)○Dic3, C4○(C2×Dic3), (C2×Dic3)⋊5C2, C2.1(C22×S3), (C2×C6).9C22, (C22×S3).2C2, (C2×C4)○(C2×Dic3), SmallGroup(48,35)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C2×C4 |
Generators and relations for S3×C2×C4
G = < a,b,c,d | a2=b4=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 92 in 54 conjugacy classes, 35 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, Dic3, C12, D6, C2×C6, C22×C4, C4×S3, C2×Dic3, C2×C12, C22×S3, S3×C2×C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4×S3, C22×S3, S3×C2×C4
Character table of S3×C2×C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | i | i | -i | -i | -1 | 1 | -1 | i | -i | i | -i | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | i | i | -i | -i | -1 | 1 | -1 | -i | i | -i | i | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | -i | i | -1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -i | i | -i | i | -1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -i | -i | i | i | -1 | 1 | -1 | i | -i | i | -i | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | -i | -i | i | i | -1 | 1 | -1 | -i | i | -i | i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | i | -i | -i | i | -i | i | -i | -1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | i | -i | -1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | -1 | 1 | i | -i | i | -i | complex lifted from C4×S3 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -i | i | -i | i | complex lifted from C4×S3 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | i | -i | -i | i | complex lifted from C4×S3 |
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)(13 20)(14 17)(15 18)(16 19)(21 23)(22 24)
G:=sub<Sym(24)| (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24)>;
G:=Group( (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,3),(2,4),(5,12),(6,9),(7,10),(8,11),(13,20),(14,17),(15,18),(16,19),(21,23),(22,24)]])
G:=TransitiveGroup(24,27);
S3×C2×C4 is a maximal subgroup of
D6⋊C8 C42⋊2S3 Dic3⋊4D4 C23.9D6 Dic3⋊D4 C4⋊C4⋊7S3 Dic3⋊5D4 D6.D4 C12⋊D4 D6⋊Q8 C4.D12 D6⋊3D4 D6⋊3Q8
S3×C2×C4 is a maximal quotient of
C42⋊2S3 C23.16D6 Dic3⋊4D4 Dic6⋊C4 C4⋊C4⋊7S3 Dic3⋊5D4 C8○D12 D12.C4
Matrix representation of S3×C2×C4 ►in GL3(𝔽13) generated by
12 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
8 | 0 | 0 |
0 | 5 | 0 |
0 | 0 | 5 |
1 | 0 | 0 |
0 | 12 | 12 |
0 | 1 | 0 |
12 | 0 | 0 |
0 | 1 | 0 |
0 | 12 | 12 |
G:=sub<GL(3,GF(13))| [12,0,0,0,1,0,0,0,1],[8,0,0,0,5,0,0,0,5],[1,0,0,0,12,1,0,12,0],[12,0,0,0,1,12,0,0,12] >;
S3×C2×C4 in GAP, Magma, Sage, TeX
S_3\times C_2\times C_4
% in TeX
G:=Group("S3xC2xC4");
// GroupNames label
G:=SmallGroup(48,35);
// by ID
G=gap.SmallGroup(48,35);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,42,804]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export