metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊3S3, D6.C4, C24⋊5C2, C4.13D6, Dic3.C4, C3⋊1M4(2), C12.13C22, C3⋊C8⋊4C2, C2.3(C4×S3), C6.2(C2×C4), (C4×S3).2C2, SmallGroup(48,5)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8⋊S3
G = < a,b,c | a8=b3=c2=1, ab=ba, cac=a5, cbc=b-1 >
Character table of C8⋊S3
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 6 | 2 | 1 | 1 | 6 | 2 | 2 | 2 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 0 | 2 | 2i | -2i | 0 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ12 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | -1 | 2i | -2i | 0 | 0 | 1 | 1 | -i | i | -i | i | complex lifted from C4×S3 |
ρ13 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | -1 | -2i | 2i | 0 | 0 | 1 | 1 | i | -i | i | -i | complex lifted from C4×S3 |
ρ14 | 2 | -2 | 0 | 2 | -2i | 2i | 0 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ15 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 1 | 0 | 0 | 0 | 0 | i | -i | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | complex faithful |
ρ16 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 1 | 0 | 0 | 0 | 0 | -i | i | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | complex faithful |
ρ17 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 1 | 0 | 0 | 0 | 0 | -i | i | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | complex faithful |
ρ18 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 1 | 0 | 0 | 0 | 0 | i | -i | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 9 21)(2 10 22)(3 11 23)(4 12 24)(5 13 17)(6 14 18)(7 15 19)(8 16 20)
(2 6)(4 8)(9 21)(10 18)(11 23)(12 20)(13 17)(14 22)(15 19)(16 24)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,9,21)(2,10,22)(3,11,23)(4,12,24)(5,13,17)(6,14,18)(7,15,19)(8,16,20), (2,6)(4,8)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,9,21)(2,10,22)(3,11,23)(4,12,24)(5,13,17)(6,14,18)(7,15,19)(8,16,20), (2,6)(4,8)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,9,21),(2,10,22),(3,11,23),(4,12,24),(5,13,17),(6,14,18),(7,15,19),(8,16,20)], [(2,6),(4,8),(9,21),(10,18),(11,23),(12,20),(13,17),(14,22),(15,19),(16,24)]])
G:=TransitiveGroup(24,31);
C8⋊S3 is a maximal subgroup of
C8○D12 S3×M4(2) D12.C4 D8⋊S3 Q8⋊3D6 D4.D6 Q16⋊S3 C8⋊D9 D6.Dic3 C12.31D6 C24⋊S3 C8⋊S4 C8.5S4 D6.Dic5 D30.5C4 C40⋊S3 D6.F5 Dic3.F5 D6.Dic7 D42.C4 C56⋊S3 C33⋊M4(2) C33⋊2M4(2) GL2(𝔽5)
C8⋊S3 is a maximal quotient of
Dic3⋊C8 C24⋊C4 D6⋊C8 C8⋊D9 D6.Dic3 C12.31D6 C24⋊S3 C8⋊S4 D6.Dic5 D30.5C4 C40⋊S3 D6.F5 Dic3.F5 D6.Dic7 D42.C4 C56⋊S3 C33⋊M4(2) C33⋊2M4(2)
Matrix representation of C8⋊S3 ►in GL2(𝔽5) generated by
2 | 1 |
4 | 3 |
4 | 1 |
4 | 0 |
1 | 4 |
0 | 4 |
G:=sub<GL(2,GF(5))| [2,4,1,3],[4,4,1,0],[1,0,4,4] >;
C8⋊S3 in GAP, Magma, Sage, TeX
C_8\rtimes S_3
% in TeX
G:=Group("C8:S3");
// GroupNames label
G:=SmallGroup(48,5);
// by ID
G=gap.SmallGroup(48,5);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,101,26,42,804]);
// Polycyclic
G:=Group<a,b,c|a^8=b^3=c^2=1,a*b=b*a,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C8⋊S3 in TeX
Character table of C8⋊S3 in TeX