Extensions 1→N→G→Q→1 with N=C4 and Q=D4⋊C4

Direct product G=N×Q with N=C4 and Q=D4⋊C4
dρLabelID
C4×D4⋊C464C4xD4:C4128,492

Semidirect products G=N:Q with N=C4 and Q=D4⋊C4
extensionφ:Q→Aut NdρLabelID
C41(D4⋊C4) = C42.118D4φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C464C4:1(D4:C4)128,714
C42(D4⋊C4) = C42.432D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C464C4:2(D4:C4)128,689
C43(D4⋊C4) = C42.98D4φ: D4⋊C4/C2×D4C2 ⊆ Aut C464C4:3(D4:C4)128,534

Non-split extensions G=N.Q with N=C4 and Q=D4⋊C4
extensionφ:Q→Aut NdρLabelID
C4.1(D4⋊C4) = C8.24D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C4164+C4.1(D4:C4)128,89
C4.2(D4⋊C4) = C8.25D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C4324-C4.2(D4:C4)128,90
C4.3(D4⋊C4) = C8.29D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C4164C4.3(D4:C4)128,91
C4.4(D4⋊C4) = C8.30D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C464C4.4(D4:C4)128,92
C4.5(D4⋊C4) = C4.D16φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C464C4.5(D4:C4)128,93
C4.6(D4⋊C4) = C8.27D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C4128C4.6(D4:C4)128,94
C4.7(D4⋊C4) = C42.45D4φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C464C4.7(D4:C4)128,212
C4.8(D4⋊C4) = C2×C4.D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C464C4.8(D4:C4)128,270
C4.9(D4⋊C4) = C2×C4.10D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C4128C4.9(D4:C4)128,271
C4.10(D4⋊C4) = C42.122D4φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C4128C4.10(D4:C4)128,720
C4.11(D4⋊C4) = C23.40D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C432C4.11(D4:C4)128,872
C4.12(D4⋊C4) = C23.41D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C464C4.12(D4:C4)128,873
C4.13(D4⋊C4) = D162C4φ: D4⋊C4/C2×C8C2 ⊆ Aut C464C4.13(D4:C4)128,147
C4.14(D4⋊C4) = Q322C4φ: D4⋊C4/C2×C8C2 ⊆ Aut C4128C4.14(D4:C4)128,148
C4.15(D4⋊C4) = D16.C4φ: D4⋊C4/C2×C8C2 ⊆ Aut C4642C4.15(D4:C4)128,149
C4.16(D4⋊C4) = D163C4φ: D4⋊C4/C2×C8C2 ⊆ Aut C4324C4.16(D4:C4)128,150
C4.17(D4⋊C4) = M6(2)⋊C2φ: D4⋊C4/C2×C8C2 ⊆ Aut C4324+C4.17(D4:C4)128,151
C4.18(D4⋊C4) = C16.18D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C4644-C4.18(D4:C4)128,152
C4.19(D4⋊C4) = C42.315D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C464C4.19(D4:C4)128,224
C4.20(D4⋊C4) = C42.413D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C432C4.20(D4:C4)128,277
C4.21(D4⋊C4) = C42.414D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C464C4.21(D4:C4)128,278
C4.22(D4⋊C4) = C42.436D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C4128C4.22(D4:C4)128,722
C4.23(D4⋊C4) = C2×C2.D16φ: D4⋊C4/C2×C8C2 ⊆ Aut C464C4.23(D4:C4)128,868
C4.24(D4⋊C4) = C2×C2.Q32φ: D4⋊C4/C2×C8C2 ⊆ Aut C4128C4.24(D4:C4)128,869
C4.25(D4⋊C4) = C2×D8.C4φ: D4⋊C4/C2×C8C2 ⊆ Aut C464C4.25(D4:C4)128,874
C4.26(D4⋊C4) = C2×M5(2)⋊C2φ: D4⋊C4/C2×C8C2 ⊆ Aut C432C4.26(D4:C4)128,878
C4.27(D4⋊C4) = C2×C8.17D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C464C4.27(D4:C4)128,879
C4.28(D4⋊C4) = C42.5Q8φ: D4⋊C4/C2×D4C2 ⊆ Aut C432C4.28(D4:C4)128,18
C4.29(D4⋊C4) = C42.27D4φ: D4⋊C4/C2×D4C2 ⊆ Aut C464C4.29(D4:C4)128,24
C4.30(D4⋊C4) = C42.8Q8φ: D4⋊C4/C2×D4C2 ⊆ Aut C4128C4.30(D4:C4)128,28
C4.31(D4⋊C4) = C8.11C42φ: D4⋊C4/C2×D4C2 ⊆ Aut C432C4.31(D4:C4)128,115
C4.32(D4⋊C4) = C8.13C42φ: D4⋊C4/C2×D4C2 ⊆ Aut C4324C4.32(D4:C4)128,117
C4.33(D4⋊C4) = C8.2C42φ: D4⋊C4/C2×D4C2 ⊆ Aut C464C4.33(D4:C4)128,119
C4.34(D4⋊C4) = D4⋊M4(2)φ: D4⋊C4/C2×D4C2 ⊆ Aut C432C4.34(D4:C4)128,218
C4.35(D4⋊C4) = C42.61D4φ: D4⋊C4/C2×D4C2 ⊆ Aut C432C4.35(D4:C4)128,249
C4.36(D4⋊C4) = C42.78D4φ: D4⋊C4/C2×D4C2 ⊆ Aut C464C4.36(D4:C4)128,279
C4.37(D4⋊C4) = C23.39D8φ: D4⋊C4/C2×D4C2 ⊆ Aut C464C4.37(D4:C4)128,871
C4.38(D4⋊C4) = C23.20SD16φ: D4⋊C4/C2×D4C2 ⊆ Aut C4324C4.38(D4:C4)128,875
C4.39(D4⋊C4) = C2×D82C4φ: D4⋊C4/C2×D4C2 ⊆ Aut C432C4.39(D4:C4)128,876
C4.40(D4⋊C4) = C23.21SD16φ: D4⋊C4/C2×D4C2 ⊆ Aut C4324C4.40(D4:C4)128,880
C4.41(D4⋊C4) = C42.385D4central extension (φ=1)128C4.41(D4:C4)128,9
C4.42(D4⋊C4) = C42.46Q8central extension (φ=1)128C4.42(D4:C4)128,11
C4.43(D4⋊C4) = C42.389D4central extension (φ=1)64C4.43(D4:C4)128,33
C4.44(D4⋊C4) = C42.10Q8central extension (φ=1)32C4.44(D4:C4)128,35
C4.45(D4⋊C4) = D4⋊C16central extension (φ=1)64C4.45(D4:C4)128,61
C4.46(D4⋊C4) = C8.31D8central extension (φ=1)64C4.46(D4:C4)128,62
C4.47(D4⋊C4) = C8≀C2central extension (φ=1)162C4.47(D4:C4)128,67
C4.48(D4⋊C4) = C8.32D8central extension (φ=1)164C4.48(D4:C4)128,68
C4.49(D4⋊C4) = C8.8C42central extension (φ=1)64C4.49(D4:C4)128,113
C4.50(D4⋊C4) = C8.9C42central extension (φ=1)64C4.50(D4:C4)128,114
C4.51(D4⋊C4) = M5(2).C4central extension (φ=1)324C4.51(D4:C4)128,120
C4.52(D4⋊C4) = C8.4C42central extension (φ=1)324C4.52(D4:C4)128,121
C4.53(D4⋊C4) = C2×D4⋊C8central extension (φ=1)64C4.53(D4:C4)128,206
C4.54(D4⋊C4) = C42.403D4central extension (φ=1)32C4.54(D4:C4)128,234
C4.55(D4⋊C4) = C42.409D4central extension (φ=1)64C4.55(D4:C4)128,272
C4.56(D4⋊C4) = C23.24D8central extension (φ=1)64C4.56(D4:C4)128,870
C4.57(D4⋊C4) = C23.13D8central extension (φ=1)324C4.57(D4:C4)128,877

׿
×
𝔽