p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊1C4, C2.1D8, C4.11D4, C2.1SD16, C22.8D4, C4⋊C4⋊1C2, (C2×C8)⋊2C2, C4.1(C2×C4), (C2×D4).3C2, C2.6(C22⋊C4), (C2×C4).14C22, 2-Sylow(CSO-(4,3)), SmallGroup(32,9)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊C4
G = < a,b,c | a4=b2=c4=1, bab=cac-1=a-1, cbc-1=ab >
Character table of D4⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 9)(2 12)(3 11)(4 10)(5 14)(6 13)(7 16)(8 15)
(1 7 10 14)(2 6 11 13)(3 5 12 16)(4 8 9 15)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9)(2,12)(3,11)(4,10)(5,14)(6,13)(7,16)(8,15), (1,7,10,14)(2,6,11,13)(3,5,12,16)(4,8,9,15)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9)(2,12)(3,11)(4,10)(5,14)(6,13)(7,16)(8,15), (1,7,10,14)(2,6,11,13)(3,5,12,16)(4,8,9,15) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,9),(2,12),(3,11),(4,10),(5,14),(6,13),(7,16),(8,15)], [(1,7,10,14),(2,6,11,13),(3,5,12,16),(4,8,9,15)]])
G:=TransitiveGroup(16,26);
D4⋊C4 is a maximal subgroup of
C23.24D4 C23.36D4 C23.37D4 C4×D8 C4×SD16 SD16⋊C4 C22⋊D8 D4⋊D4 C22⋊SD16 D4.7D4 C4⋊D8 C4⋊SD16 D4.2D4 Q8.D4 C8⋊8D4 C8⋊7D4 C8⋊D4 C8⋊2D4 D4⋊2Q8 D4.Q8 C22.D8 C23.46D4 C23.19D4 C42.78C22 C42.28C22 C42.29C22 C3⋊S3.2D8 C62.3D4 C3⋊S3.5D8 C2.AΓL1(𝔽9)
D4p⋊C4: D8⋊C4 C6.D8 C2.D24 D20⋊6C4 D20⋊5C4 D20⋊C4 C14.D8 C2.D56 ...
C2p.D8: D4⋊Q8 C4.4D8 D4⋊Dic3 D4⋊Dic5 D4⋊Dic7 D4⋊Dic11 D4⋊Dic13 ...
D4⋊C4 is a maximal quotient of
D4⋊C8 C22.SD16 C4.D8 C4.10D8 C22.4Q16 C3⋊S3.2D8 C62.3D4 C3⋊S3.5D8 C2.AΓL1(𝔽9)
D4p⋊C4: C2.D16 D8⋊2C4 C6.D8 C2.D24 D20⋊6C4 D20⋊5C4 D20⋊C4 C14.D8 ...
C4p.D4: C2.Q32 D8.C4 M5(2)⋊C2 C8.17D4 D4⋊Dic3 D4⋊Dic5 D4⋊Dic7 D4⋊Dic11 ...
Matrix representation of D4⋊C4 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 0 | 1 |
0 | 16 | 0 |
16 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
13 | 0 | 0 |
0 | 12 | 5 |
0 | 5 | 5 |
G:=sub<GL(3,GF(17))| [1,0,0,0,0,16,0,1,0],[16,0,0,0,0,1,0,1,0],[13,0,0,0,12,5,0,5,5] >;
D4⋊C4 in GAP, Magma, Sage, TeX
D_4\rtimes C_4
% in TeX
G:=Group("D4:C4");
// GroupNames label
G:=SmallGroup(32,9);
// by ID
G=gap.SmallGroup(32,9);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,40,61,302,157,72]);
// Polycyclic
G:=Group<a,b,c|a^4=b^2=c^4=1,b*a*b=c*a*c^-1=a^-1,c*b*c^-1=a*b>;
// generators/relations
Export
Subgroup lattice of D4⋊C4 in TeX
Character table of D4⋊C4 in TeX