Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC16

Direct product G=NxQ with N=C4 and Q=C2xC16
dρLabelID
C2xC4xC16128C2xC4xC16128,837

Semidirect products G=N:Q with N=C4 and Q=C2xC16
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC16) = D4xC16φ: C2xC16/C16C2 ⊆ Aut C464C4:1(C2xC16)128,899
C4:2(C2xC16) = C2xC4:C16φ: C2xC16/C2xC8C2 ⊆ Aut C4128C4:2(C2xC16)128,881

Non-split extensions G=N.Q with N=C4 and Q=C2xC16
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC16) = D4:C16φ: C2xC16/C16C2 ⊆ Aut C464C4.1(C2xC16)128,61
C4.2(C2xC16) = Q8:C16φ: C2xC16/C16C2 ⊆ Aut C4128C4.2(C2xC16)128,69
C4.3(C2xC16) = D4.C16φ: C2xC16/C16C2 ⊆ Aut C4642C4.3(C2xC16)128,133
C4.4(C2xC16) = Q8xC16φ: C2xC16/C16C2 ⊆ Aut C4128C4.4(C2xC16)128,914
C4.5(C2xC16) = D4oC32φ: C2xC16/C16C2 ⊆ Aut C4642C4.5(C2xC16)128,990
C4.6(C2xC16) = C8:2C16φ: C2xC16/C2xC8C2 ⊆ Aut C4128C4.6(C2xC16)128,99
C4.7(C2xC16) = C8.36D8φ: C2xC16/C2xC8C2 ⊆ Aut C4128C4.7(C2xC16)128,102
C4.8(C2xC16) = C8.C16φ: C2xC16/C2xC8C2 ⊆ Aut C4322C4.8(C2xC16)128,154
C4.9(C2xC16) = C42.13C8φ: C2xC16/C2xC8C2 ⊆ Aut C464C4.9(C2xC16)128,894
C4.10(C2xC16) = C2xM6(2)φ: C2xC16/C2xC8C2 ⊆ Aut C464C4.10(C2xC16)128,989
C4.11(C2xC16) = C8:C16central extension (φ=1)128C4.11(C2xC16)128,44
C4.12(C2xC16) = C32:5C4central extension (φ=1)128C4.12(C2xC16)128,129
C4.13(C2xC16) = M7(2)central extension (φ=1)642C4.13(C2xC16)128,160

׿
x
:
Z
F
o
wr
Q
<