Copied to
clipboard

G = C8⋊C16order 128 = 27

3rd semidirect product of C8 and C16 acting via C16/C8=C2

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C83C16, C82.9C2, C8.24M4(2), C4.10M5(2), (C2×C8).6C8, C2.1(C4×C16), (C2×C16).7C4, (C4×C16).1C2, (C4×C8).13C4, C4.11(C2×C16), C2.2(C8⋊C8), (C2×C4).81C42, C22.13(C4×C8), C4.13(C8⋊C4), C2.2(C165C4), C42.336(C2×C4), (C4×C8).440C22, (C2×C4).93(C2×C8), (C2×C8).257(C2×C4), SmallGroup(128,44)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C8⋊C16
C1C2C4C2×C4C2×C8C4×C8C4×C16 — C8⋊C16
C1C2 — C8⋊C16
C1C4×C8 — C8⋊C16
C1C2C2C2C2C2×C4C2×C4C4×C8 — C8⋊C16

Generators and relations for C8⋊C16
 G = < a,b | a8=b16=1, bab-1=a5 >

2C8
2C8
2C16
2C16
2C16
2C16

Smallest permutation representation of C8⋊C16
Regular action on 128 points
Generators in S128
(1 126 32 88 44 76 64 112)(2 77 17 97 45 127 49 89)(3 128 18 90 46 78 50 98)(4 79 19 99 47 113 51 91)(5 114 20 92 48 80 52 100)(6 65 21 101 33 115 53 93)(7 116 22 94 34 66 54 102)(8 67 23 103 35 117 55 95)(9 118 24 96 36 68 56 104)(10 69 25 105 37 119 57 81)(11 120 26 82 38 70 58 106)(12 71 27 107 39 121 59 83)(13 122 28 84 40 72 60 108)(14 73 29 109 41 123 61 85)(15 124 30 86 42 74 62 110)(16 75 31 111 43 125 63 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,126,32,88,44,76,64,112)(2,77,17,97,45,127,49,89)(3,128,18,90,46,78,50,98)(4,79,19,99,47,113,51,91)(5,114,20,92,48,80,52,100)(6,65,21,101,33,115,53,93)(7,116,22,94,34,66,54,102)(8,67,23,103,35,117,55,95)(9,118,24,96,36,68,56,104)(10,69,25,105,37,119,57,81)(11,120,26,82,38,70,58,106)(12,71,27,107,39,121,59,83)(13,122,28,84,40,72,60,108)(14,73,29,109,41,123,61,85)(15,124,30,86,42,74,62,110)(16,75,31,111,43,125,63,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)>;

G:=Group( (1,126,32,88,44,76,64,112)(2,77,17,97,45,127,49,89)(3,128,18,90,46,78,50,98)(4,79,19,99,47,113,51,91)(5,114,20,92,48,80,52,100)(6,65,21,101,33,115,53,93)(7,116,22,94,34,66,54,102)(8,67,23,103,35,117,55,95)(9,118,24,96,36,68,56,104)(10,69,25,105,37,119,57,81)(11,120,26,82,38,70,58,106)(12,71,27,107,39,121,59,83)(13,122,28,84,40,72,60,108)(14,73,29,109,41,123,61,85)(15,124,30,86,42,74,62,110)(16,75,31,111,43,125,63,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,126,32,88,44,76,64,112),(2,77,17,97,45,127,49,89),(3,128,18,90,46,78,50,98),(4,79,19,99,47,113,51,91),(5,114,20,92,48,80,52,100),(6,65,21,101,33,115,53,93),(7,116,22,94,34,66,54,102),(8,67,23,103,35,117,55,95),(9,118,24,96,36,68,56,104),(10,69,25,105,37,119,57,81),(11,120,26,82,38,70,58,106),(12,71,27,107,39,121,59,83),(13,122,28,84,40,72,60,108),(14,73,29,109,41,123,61,85),(15,124,30,86,42,74,62,110),(16,75,31,111,43,125,63,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)]])

80 conjugacy classes

class 1 2A2B2C4A···4L8A···8P8Q···8AF16A···16AF
order12224···48···88···816···16
size11111···11···12···22···2

80 irreducible representations

dim111111122
type+++
imageC1C2C2C4C4C8C16M4(2)M5(2)
kernelC8⋊C16C82C4×C16C4×C8C2×C16C2×C8C8C8C4
# reps11248163288

Matrix representation of C8⋊C16 in GL3(𝔽17) generated by

100
0013
010
,
300
0100
007
G:=sub<GL(3,GF(17))| [1,0,0,0,0,1,0,13,0],[3,0,0,0,10,0,0,0,7] >;

C8⋊C16 in GAP, Magma, Sage, TeX

C_8\rtimes C_{16}
% in TeX

G:=Group("C8:C16");
// GroupNames label

G:=SmallGroup(128,44);
// by ID

G=gap.SmallGroup(128,44);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,28,253,64,100,136,124]);
// Polycyclic

G:=Group<a,b|a^8=b^16=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C8⋊C16 in TeX

׿
×
𝔽