Extensions 1→N→G→Q→1 with N=C2 and Q=C4×D8

Direct product G=N×Q with N=C2 and Q=C4×D8
dρLabelID
C2×C4×D864C2xC4xD8128,1668


Non-split extensions G=N.Q with N=C2 and Q=C4×D8
extensionφ:Q→Aut NdρLabelID
C2.1(C4×D8) = C8×D8central extension (φ=1)64C2.1(C4xD8)128,307
C2.2(C4×D8) = C4×D4⋊C4central extension (φ=1)64C2.2(C4xD8)128,492
C2.3(C4×D8) = C4×C2.D8central extension (φ=1)128C2.3(C4xD8)128,507
C2.4(C4×D8) = C89D8central stem extension (φ=1)64C2.4(C4xD8)128,313
C2.5(C4×D8) = C86D8central stem extension (φ=1)64C2.5(C4xD8)128,321
C2.6(C4×D8) = C2.(C4×D8)central stem extension (φ=1)64C2.6(C4xD8)128,594
C2.7(C4×D8) = (C2×C4)⋊9D8central stem extension (φ=1)64C2.7(C4xD8)128,611
C2.8(C4×D8) = C2.D84C4central stem extension (φ=1)128C2.8(C4xD8)128,650
C2.9(C4×D8) = D4⋊C4⋊C4central stem extension (φ=1)64C2.9(C4xD8)128,657
C2.10(C4×D8) = C2.(C87D4)central stem extension (φ=1)64C2.10(C4xD8)128,666
C2.11(C4×D8) = C85(C4⋊C4)central stem extension (φ=1)128C2.11(C4xD8)128,674
C2.12(C4×D8) = (C2×C4)⋊6D8central stem extension (φ=1)64C2.12(C4xD8)128,702
C2.13(C4×D8) = C4×D16central stem extension (φ=1)64C2.13(C4xD8)128,904
C2.14(C4×D8) = C4×SD32central stem extension (φ=1)64C2.14(C4xD8)128,905
C2.15(C4×D8) = C4×Q32central stem extension (φ=1)128C2.15(C4xD8)128,906
C2.16(C4×D8) = SD323C4central stem extension (φ=1)64C2.16(C4xD8)128,907
C2.17(C4×D8) = Q324C4central stem extension (φ=1)128C2.17(C4xD8)128,908
C2.18(C4×D8) = D164C4central stem extension (φ=1)64C2.18(C4xD8)128,909
C2.19(C4×D8) = C8○D16central stem extension (φ=1)322C2.19(C4xD8)128,910
C2.20(C4×D8) = D165C4central stem extension (φ=1)324C2.20(C4xD8)128,911

׿
×
𝔽