Copied to
clipboard

G = (C2×C4)⋊6D8order 128 = 27

1st semidirect product of C2×C4 and D8 acting via D8/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C4)⋊6D8, (C2×D8)⋊7C4, C2.12(C4×D8), C4.19(C4×D4), C84(C22⋊C4), (C2×C8).245D4, C2.5(C87D4), C2.3(C84D4), (C22×D8).2C2, C22.47(C2×D8), C4.83(C4⋊D4), C4.3(C4.4D4), C22.183(C4×D4), (C22×C4).560D4, C23.803(C2×D4), C2.5(C8.12D4), C22.77(C4○D8), C22.39(C41D4), (C22×C8).494C22, C24.3C224C2, (C22×D4).49C22, C22.145(C4⋊D4), (C22×C4).1410C23, (C2×C42).1077C22, C2.22(C24.3C22), (C2×C4×C8)⋊23C2, (C2×C2.D8)⋊6C2, (C2×D4⋊C4)⋊8C2, (C2×C8).173(C2×C4), C4.38(C2×C22⋊C4), (C2×D4).110(C2×C4), (C2×C4).1355(C2×D4), (C2×C4⋊C4).91C22, (C2×C4).601(C4○D4), (C2×C4).424(C22×C4), SmallGroup(128,702)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — (C2×C4)⋊6D8
C1C2C22C2×C4C22×C4C22×C8C2×C4×C8 — (C2×C4)⋊6D8
C1C2C2×C4 — (C2×C4)⋊6D8
C1C23C2×C42 — (C2×C4)⋊6D8
C1C2C2C22×C4 — (C2×C4)⋊6D8

Generators and relations for (C2×C4)⋊6D8
 G = < a,b,c,d | a2=b4=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=ab-1, dcd=c-1 >

Subgroups: 484 in 192 conjugacy classes, 68 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×C8, D4⋊C4, C2.D8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C2×D8, C2×D8, C22×D4, C24.3C22, C2×C4×C8, C2×D4⋊C4, C2×C2.D8, C22×D8, (C2×C4)⋊6D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C2×D8, C4○D8, C24.3C22, C4×D8, C87D4, C84D4, C8.12D4, (C2×C4)⋊6D8

Smallest permutation representation of (C2×C4)⋊6D8
On 64 points
Generators in S64
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 40)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 49)(24 50)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 57)(48 58)
(1 19 33 46)(2 20 34 47)(3 21 35 48)(4 22 36 41)(5 23 37 42)(6 24 38 43)(7 17 39 44)(8 18 40 45)(9 63 26 52)(10 64 27 53)(11 57 28 54)(12 58 29 55)(13 59 30 56)(14 60 31 49)(15 61 32 50)(16 62 25 51)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 2)(3 8)(4 7)(5 6)(9 12)(10 11)(13 16)(14 15)(17 59)(18 58)(19 57)(20 64)(21 63)(22 62)(23 61)(24 60)(25 30)(26 29)(27 28)(31 32)(33 34)(35 40)(36 39)(37 38)(41 51)(42 50)(43 49)(44 56)(45 55)(46 54)(47 53)(48 52)

G:=sub<Sym(64)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,57)(48,58), (1,19,33,46)(2,20,34,47)(3,21,35,48)(4,22,36,41)(5,23,37,42)(6,24,38,43)(7,17,39,44)(8,18,40,45)(9,63,26,52)(10,64,27,53)(11,57,28,54)(12,58,29,55)(13,59,30,56)(14,60,31,49)(15,61,32,50)(16,62,25,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,2)(3,8)(4,7)(5,6)(9,12)(10,11)(13,16)(14,15)(17,59)(18,58)(19,57)(20,64)(21,63)(22,62)(23,61)(24,60)(25,30)(26,29)(27,28)(31,32)(33,34)(35,40)(36,39)(37,38)(41,51)(42,50)(43,49)(44,56)(45,55)(46,54)(47,53)(48,52)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,57)(48,58), (1,19,33,46)(2,20,34,47)(3,21,35,48)(4,22,36,41)(5,23,37,42)(6,24,38,43)(7,17,39,44)(8,18,40,45)(9,63,26,52)(10,64,27,53)(11,57,28,54)(12,58,29,55)(13,59,30,56)(14,60,31,49)(15,61,32,50)(16,62,25,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,2)(3,8)(4,7)(5,6)(9,12)(10,11)(13,16)(14,15)(17,59)(18,58)(19,57)(20,64)(21,63)(22,62)(23,61)(24,60)(25,30)(26,29)(27,28)(31,32)(33,34)(35,40)(36,39)(37,38)(41,51)(42,50)(43,49)(44,56)(45,55)(46,54)(47,53)(48,52) );

G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,40),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,49),(24,50),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,57),(48,58)], [(1,19,33,46),(2,20,34,47),(3,21,35,48),(4,22,36,41),(5,23,37,42),(6,24,38,43),(7,17,39,44),(8,18,40,45),(9,63,26,52),(10,64,27,53),(11,57,28,54),(12,58,29,55),(13,59,30,56),(14,60,31,49),(15,61,32,50),(16,62,25,51)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11),(13,16),(14,15),(17,59),(18,58),(19,57),(20,64),(21,63),(22,62),(23,61),(24,60),(25,30),(26,29),(27,28),(31,32),(33,34),(35,40),(36,39),(37,38),(41,51),(42,50),(43,49),(44,56),(45,55),(46,54),(47,53),(48,52)]])

44 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4L4M4N4O4P8A···8P
order12···222224···444448···8
size11···188882···288882···2

44 irreducible representations

dim111111122222
type+++++++++
imageC1C2C2C2C2C2C4D4D4D8C4○D4C4○D8
kernel(C2×C4)⋊6D8C24.3C22C2×C4×C8C2×D4⋊C4C2×C2.D8C22×D8C2×D8C2×C8C22×C4C2×C4C2×C4C22
# reps121211862848

Matrix representation of (C2×C4)⋊6D8 in GL5(𝔽17)

160000
016000
001600
000160
000016
,
40000
00400
013000
000130
000013
,
160000
014300
0141400
000143
0001414
,
10000
0141400
014300
00033
000314

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[4,0,0,0,0,0,0,13,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,13],[16,0,0,0,0,0,14,14,0,0,0,3,14,0,0,0,0,0,14,14,0,0,0,3,14],[1,0,0,0,0,0,14,14,0,0,0,14,3,0,0,0,0,0,3,3,0,0,0,3,14] >;

(C2×C4)⋊6D8 in GAP, Magma, Sage, TeX

(C_2\times C_4)\rtimes_6D_8
% in TeX

G:=Group("(C2xC4):6D8");
// GroupNames label

G:=SmallGroup(128,702);
// by ID

G=gap.SmallGroup(128,702);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,436,2019,248,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽