direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4×D8, C42.71C22, C8⋊4(C2×C4), (C4×C8)⋊7C2, (C4×D4)⋊1C2, D4⋊1(C2×C4), C2.3(C2×D8), C4○2(C2.D8), C2.D8⋊14C2, (C2×D8).7C2, (C2×C4).51D4, C2.12(C4×D4), C4.1(C4○D4), C2.3(C4○D8), C4.9(C22×C4), C4○2(D4⋊C4), D4⋊C4⋊21C2, C4⋊C4.50C22, (C2×C4).73C23, (C2×C8).75C22, C22.51(C2×D4), (C2×D4).50C22, SmallGroup(64,118)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4×D8
G = < a,b,c | a4=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 125 in 67 conjugacy classes, 37 normal (17 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C4×C8, D4⋊C4, C2.D8, C4×D4, C2×D8, C4×D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D8, C22×C4, C2×D4, C4○D4, C4×D4, C2×D8, C4○D8, C4×D8
Character table of C4×D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | i | i | -i | -i | -i | i | -1 | 1 | -i | i | -i | i | -1 | -i | i | 1 | 1 | -1 | -i | i | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | -i | i | i | i | -i | -1 | 1 | i | -i | i | -i | -1 | i | -i | 1 | 1 | -1 | i | -i | linear of order 4 |
ρ11 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | i | -i | -i | -i | i | -1 | 1 | -i | -i | i | i | 1 | i | -i | -1 | -1 | 1 | i | -i | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | -i | i | i | i | -i | -1 | 1 | i | i | -i | -i | 1 | -i | i | -1 | -1 | 1 | -i | i | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | -1 | 1 | i | -i | i | -i | -1 | -i | i | 1 | 1 | -1 | -i | i | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | -1 | 1 | -i | i | -i | i | -1 | i | -i | 1 | 1 | -1 | i | -i | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | i | -i | -i | -i | i | -1 | 1 | i | i | -i | -i | 1 | i | -i | -1 | -1 | 1 | i | -i | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | i | i | -i | -1 | 1 | -i | -i | i | i | 1 | -i | i | -1 | -1 | 1 | -i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | -√-2 | √2 | -√2 | √2 | √-2 | √-2 | complex lifted from C4○D8 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | -2i | 2i | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | √-2 | √2 | -√2 | √2 | -√-2 | -√-2 | complex lifted from C4○D8 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | -√-2 | -√2 | √2 | -√2 | √-2 | √-2 | complex lifted from C4○D8 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | √-2 | -√2 | √2 | -√2 | -√-2 | -√-2 | complex lifted from C4○D8 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 2i | -2i | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(1 18 29 15)(2 19 30 16)(3 20 31 9)(4 21 32 10)(5 22 25 11)(6 23 26 12)(7 24 27 13)(8 17 28 14)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 32)(7 31)(8 30)(9 24)(10 23)(11 22)(12 21)(13 20)(14 19)(15 18)(16 17)
G:=sub<Sym(32)| (1,18,29,15)(2,19,30,16)(3,20,31,9)(4,21,32,10)(5,22,25,11)(6,23,26,12)(7,24,27,13)(8,17,28,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)>;
G:=Group( (1,18,29,15)(2,19,30,16)(3,20,31,9)(4,21,32,10)(5,22,25,11)(6,23,26,12)(7,24,27,13)(8,17,28,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17) );
G=PermutationGroup([[(1,18,29,15),(2,19,30,16),(3,20,31,9),(4,21,32,10),(5,22,25,11),(6,23,26,12),(7,24,27,13),(8,17,28,14)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,32),(7,31),(8,30),(9,24),(10,23),(11,22),(12,21),(13,20),(14,19),(15,18),(16,17)]])
C4×D8 is a maximal subgroup of
C4.16D16 D8⋊C8 D8⋊5C8 C8⋊9D8 D4⋊2M4(2) C8⋊6D8 C8⋊3M4(2) SD32⋊3C4 D8⋊2D4 D8.4D4 D8.5D4 D8⋊1Q8 D8⋊Q8 D8.Q8 C42.221D4 C42.384D4 C42.225D4 C42.450D4 C42.352C23 C42.353C23 C42.356C23 C42.358C23 C42.308D4 C42.387C23 D8⋊5D4 D8⋊13D4 C42.468C23 C42.479C23 Q8⋊4D8 C42.501C23 C42.502C23 C42.507C23 C42.508C23 C42.511C23 D8⋊6Q8 D8⋊4Q8 D8⋊5Q8 Q8⋊5D8 C42.527C23 C42.530C23
D8p⋊C4: D16⋊4C4 Dic3⋊5D8 D40⋊12C4 Dic7⋊5D8 ...
C8⋊pD4⋊C2: C42.366D4 C42.255D4 C42.388C23 C42.391C23 D8⋊4D4 D8⋊12D4 D4⋊4D8 C42.462C23 ...
D4p⋊(C2×C4): C42.275C23 C42.277C23 C42.280C23 Dic3⋊4D8 Dic5⋊4D8 Dic7⋊4D8 ...
C4×D8 is a maximal quotient of
C8⋊9D8 C8⋊6D8 C2.D8⋊4C4 C8⋊5(C4⋊C4)
D8p⋊C4: D16⋊4C4 C8○D16 D16⋊5C4 Dic3⋊5D8 D40⋊12C4 Dic7⋊5D8 ...
C2p.(C4×D4): C2.(C4×D8) (C2×C4)⋊9D8 D4⋊C4⋊C4 C2.(C8⋊7D4) (C2×C4)⋊6D8 SD32⋊3C4 Q32⋊4C4 Dic3⋊4D8 ...
Matrix representation of C4×D8 ►in GL3(𝔽17) generated by
4 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
16 | 0 | 0 |
0 | 14 | 3 |
0 | 14 | 14 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 16 |
G:=sub<GL(3,GF(17))| [4,0,0,0,16,0,0,0,16],[16,0,0,0,14,14,0,3,14],[1,0,0,0,1,0,0,0,16] >;
C4×D8 in GAP, Magma, Sage, TeX
C_4\times D_8
% in TeX
G:=Group("C4xD8");
// GroupNames label
G:=SmallGroup(64,118);
// by ID
G=gap.SmallGroup(64,118);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,86,963,489,117]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export