Copied to
clipboard

G = Q324C4order 128 = 27

3rd semidirect product of Q32 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: Q324C4, C42.133D4, C16.8(C2×C4), C4.29(C4×D4), C2.17(C4×D8), (C2×C8).211D4, (C2×C4).110D8, Q16.3(C2×C4), (C2×Q32).6C2, C165C4.1C2, C164C4.2C2, C4.15(C4○D8), C8.42(C4○D4), C8.39(C22×C4), (C4×Q16).19C2, C22.65(C2×D8), (C4×C8).219C22, (C2×C8).506C23, (C2×C16).20C22, C2.Q32.6C2, C2.5(Q32⋊C2), C2.D8.154C22, (C2×Q16).105C22, (C2×C4).772(C2×D4), SmallGroup(128,908)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — Q324C4
C1C2C4C2×C4C2×C8C4×C8C4×Q16 — Q324C4
C1C2C4C8 — Q324C4
C1C22C42C4×C8 — Q324C4
C1C2C2C2C2C4C4C2×C8 — Q324C4

Generators and relations for Q324C4
 G = < a,b,c | a16=c4=1, b2=a8, bab-1=a-1, cac-1=a9, bc=cb >

Subgroups: 148 in 74 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, C2×C4, Q8, C16, C16, C42, C42, C4⋊C4, C2×C8, Q16, Q16, C2×Q8, C4×C8, Q8⋊C4, C2.D8, C2×C16, Q32, C4×Q8, C2×Q16, C165C4, C2.Q32, C164C4, C4×Q16, C2×Q32, Q324C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D8, C22×C4, C2×D4, C4○D4, C4×D4, C2×D8, C4○D8, C4×D8, Q32⋊C2, Q324C4

Smallest permutation representation of Q324C4
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 115 9 123)(2 114 10 122)(3 113 11 121)(4 128 12 120)(5 127 13 119)(6 126 14 118)(7 125 15 117)(8 124 16 116)(17 62 25 54)(18 61 26 53)(19 60 27 52)(20 59 28 51)(21 58 29 50)(22 57 30 49)(23 56 31 64)(24 55 32 63)(33 91 41 83)(34 90 42 82)(35 89 43 81)(36 88 44 96)(37 87 45 95)(38 86 46 94)(39 85 47 93)(40 84 48 92)(65 111 73 103)(66 110 74 102)(67 109 75 101)(68 108 76 100)(69 107 77 99)(70 106 78 98)(71 105 79 97)(72 104 80 112)
(1 97 90 28)(2 106 91 21)(3 99 92 30)(4 108 93 23)(5 101 94 32)(6 110 95 25)(7 103 96 18)(8 112 81 27)(9 105 82 20)(10 98 83 29)(11 107 84 22)(12 100 85 31)(13 109 86 24)(14 102 87 17)(15 111 88 26)(16 104 89 19)(33 50 122 70)(34 59 123 79)(35 52 124 72)(36 61 125 65)(37 54 126 74)(38 63 127 67)(39 56 128 76)(40 49 113 69)(41 58 114 78)(42 51 115 71)(43 60 116 80)(44 53 117 73)(45 62 118 66)(46 55 119 75)(47 64 120 68)(48 57 121 77)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,115,9,123)(2,114,10,122)(3,113,11,121)(4,128,12,120)(5,127,13,119)(6,126,14,118)(7,125,15,117)(8,124,16,116)(17,62,25,54)(18,61,26,53)(19,60,27,52)(20,59,28,51)(21,58,29,50)(22,57,30,49)(23,56,31,64)(24,55,32,63)(33,91,41,83)(34,90,42,82)(35,89,43,81)(36,88,44,96)(37,87,45,95)(38,86,46,94)(39,85,47,93)(40,84,48,92)(65,111,73,103)(66,110,74,102)(67,109,75,101)(68,108,76,100)(69,107,77,99)(70,106,78,98)(71,105,79,97)(72,104,80,112), (1,97,90,28)(2,106,91,21)(3,99,92,30)(4,108,93,23)(5,101,94,32)(6,110,95,25)(7,103,96,18)(8,112,81,27)(9,105,82,20)(10,98,83,29)(11,107,84,22)(12,100,85,31)(13,109,86,24)(14,102,87,17)(15,111,88,26)(16,104,89,19)(33,50,122,70)(34,59,123,79)(35,52,124,72)(36,61,125,65)(37,54,126,74)(38,63,127,67)(39,56,128,76)(40,49,113,69)(41,58,114,78)(42,51,115,71)(43,60,116,80)(44,53,117,73)(45,62,118,66)(46,55,119,75)(47,64,120,68)(48,57,121,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,115,9,123)(2,114,10,122)(3,113,11,121)(4,128,12,120)(5,127,13,119)(6,126,14,118)(7,125,15,117)(8,124,16,116)(17,62,25,54)(18,61,26,53)(19,60,27,52)(20,59,28,51)(21,58,29,50)(22,57,30,49)(23,56,31,64)(24,55,32,63)(33,91,41,83)(34,90,42,82)(35,89,43,81)(36,88,44,96)(37,87,45,95)(38,86,46,94)(39,85,47,93)(40,84,48,92)(65,111,73,103)(66,110,74,102)(67,109,75,101)(68,108,76,100)(69,107,77,99)(70,106,78,98)(71,105,79,97)(72,104,80,112), (1,97,90,28)(2,106,91,21)(3,99,92,30)(4,108,93,23)(5,101,94,32)(6,110,95,25)(7,103,96,18)(8,112,81,27)(9,105,82,20)(10,98,83,29)(11,107,84,22)(12,100,85,31)(13,109,86,24)(14,102,87,17)(15,111,88,26)(16,104,89,19)(33,50,122,70)(34,59,123,79)(35,52,124,72)(36,61,125,65)(37,54,126,74)(38,63,127,67)(39,56,128,76)(40,49,113,69)(41,58,114,78)(42,51,115,71)(43,60,116,80)(44,53,117,73)(45,62,118,66)(46,55,119,75)(47,64,120,68)(48,57,121,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,115,9,123),(2,114,10,122),(3,113,11,121),(4,128,12,120),(5,127,13,119),(6,126,14,118),(7,125,15,117),(8,124,16,116),(17,62,25,54),(18,61,26,53),(19,60,27,52),(20,59,28,51),(21,58,29,50),(22,57,30,49),(23,56,31,64),(24,55,32,63),(33,91,41,83),(34,90,42,82),(35,89,43,81),(36,88,44,96),(37,87,45,95),(38,86,46,94),(39,85,47,93),(40,84,48,92),(65,111,73,103),(66,110,74,102),(67,109,75,101),(68,108,76,100),(69,107,77,99),(70,106,78,98),(71,105,79,97),(72,104,80,112)], [(1,97,90,28),(2,106,91,21),(3,99,92,30),(4,108,93,23),(5,101,94,32),(6,110,95,25),(7,103,96,18),(8,112,81,27),(9,105,82,20),(10,98,83,29),(11,107,84,22),(12,100,85,31),(13,109,86,24),(14,102,87,17),(15,111,88,26),(16,104,89,19),(33,50,122,70),(34,59,123,79),(35,52,124,72),(36,61,125,65),(37,54,126,74),(38,63,127,67),(39,56,128,76),(40,49,113,69),(41,58,114,78),(42,51,115,71),(43,60,116,80),(44,53,117,73),(45,62,118,66),(46,55,119,75),(47,64,120,68),(48,57,121,77)]])

32 conjugacy classes

class 1 2A2B2C4A···4F4G···4N8A8B8C8D8E8F16A···16H
order12224···44···488888816···16
size11112···28···82222444···4

32 irreducible representations

dim1111111222224
type+++++++++-
imageC1C2C2C2C2C2C4D4D4C4○D4D8C4○D8Q32⋊C2
kernelQ324C4C165C4C2.Q32C164C4C4×Q16C2×Q32Q32C42C2×C8C8C2×C4C4C2
# reps1121218112444

Matrix representation of Q324C4 in GL6(𝔽17)

1410000
730000
001015167
002101016
0016772
001016157
,
1600000
1110000
0010100
001700
0000101
000017
,
400000
040000
000010
000001
0016000
0001600

G:=sub<GL(6,GF(17))| [14,7,0,0,0,0,1,3,0,0,0,0,0,0,10,2,16,10,0,0,15,10,7,16,0,0,16,10,7,15,0,0,7,16,2,7],[16,11,0,0,0,0,0,1,0,0,0,0,0,0,10,1,0,0,0,0,1,7,0,0,0,0,0,0,10,1,0,0,0,0,1,7],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0] >;

Q324C4 in GAP, Magma, Sage, TeX

Q_{32}\rtimes_4C_4
% in TeX

G:=Group("Q32:4C4");
// GroupNames label

G:=SmallGroup(128,908);
// by ID

G=gap.SmallGroup(128,908);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,456,1430,100,1123,570,360,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c|a^16=c^4=1,b^2=a^8,b*a*b^-1=a^-1,c*a*c^-1=a^9,b*c=c*b>;
// generators/relations

׿
×
𝔽