Copied to
clipboard

G = C2.D84C4order 128 = 27

2nd semidirect product of C2.D8 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2.D84C4, C2.8(C4×D8), C4⋊C4.11Q8, C4.23(C4×Q8), (C2×C4).107D8, C22.41(C2×D8), C2.4(Q8.Q8), C2.3(D4⋊Q8), C23.776(C2×D4), C22.156(C4×D4), (C22×C4).691D4, C2.8(Q16⋊C4), C22.61(C4○D8), C22.4Q16.7C2, (C22×C8).42C22, C4.11(C42.C2), C4.22(C42⋊C2), C4.13(C422C2), (C2×C42).291C22, C2.4(C22.D8), C22.75(C22⋊Q8), (C22×C4).1374C23, C2.4(C23.20D4), C22.70(C8.C22), C22.7C42.20C2, C23.65C23.4C2, C2.9(C23.63C23), C22.88(C22.D4), (C4×C4⋊C4).14C2, C4⋊C4.76(C2×C4), (C2×C8).38(C2×C4), (C2×C2.D8).5C2, (C2×C4).269(C2×Q8), (C2×C4).571(C4○D4), (C2×C4⋊C4).769C22, (C2×C4).392(C22×C4), SmallGroup(128,650)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2.D84C4
C1C2C22C2×C4C22×C4C2×C4⋊C4C4×C4⋊C4 — C2.D84C4
C1C2C2×C4 — C2.D84C4
C1C23C2×C42 — C2.D84C4
C1C2C2C22×C4 — C2.D84C4

Generators and relations for C2.D84C4
 G = < a,b,c,d | a2=b8=d4=1, c2=a, dbd-1=ab=ba, dcd-1=ac=ca, ad=da, cbc-1=b-1 >

Subgroups: 220 in 115 conjugacy classes, 58 normal (44 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.C42, C2.D8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.7C42, C22.4Q16, C4×C4⋊C4, C23.65C23, C2×C2.D8, C2.D84C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D8, C22×C4, C2×D4, C2×Q8, C4○D4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C42.C2, C422C2, C2×D8, C4○D8, C8.C22, C23.63C23, C4×D8, Q16⋊C4, D4⋊Q8, Q8.Q8, C22.D8, C23.20D4, C2.D84C4

Smallest permutation representation of C2.D84C4
Regular action on 128 points
Generators in S128
(1 64)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 105)(10 106)(11 107)(12 108)(13 109)(14 110)(15 111)(16 112)(17 97)(18 98)(19 99)(20 100)(21 101)(22 102)(23 103)(24 104)(25 89)(26 90)(27 91)(28 92)(29 93)(30 94)(31 95)(32 96)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 73)(40 74)(41 83)(42 84)(43 85)(44 86)(45 87)(46 88)(47 81)(48 82)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 65)(56 66)(113 124)(114 125)(115 126)(116 127)(117 128)(118 121)(119 122)(120 123)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 110 64 14)(2 109 57 13)(3 108 58 12)(4 107 59 11)(5 106 60 10)(6 105 61 9)(7 112 62 16)(8 111 63 15)(17 87 97 45)(18 86 98 44)(19 85 99 43)(20 84 100 42)(21 83 101 41)(22 82 102 48)(23 81 103 47)(24 88 104 46)(25 79 89 37)(26 78 90 36)(27 77 91 35)(28 76 92 34)(29 75 93 33)(30 74 94 40)(31 73 95 39)(32 80 96 38)(49 120 67 123)(50 119 68 122)(51 118 69 121)(52 117 70 128)(53 116 71 127)(54 115 72 126)(55 114 65 125)(56 113 66 124)
(1 74 123 99)(2 33 124 20)(3 76 125 101)(4 35 126 22)(5 78 127 103)(6 37 128 24)(7 80 121 97)(8 39 122 18)(9 25 70 88)(10 90 71 47)(11 27 72 82)(12 92 65 41)(13 29 66 84)(14 94 67 43)(15 31 68 86)(16 96 69 45)(17 62 38 118)(19 64 40 120)(21 58 34 114)(23 60 36 116)(26 53 81 106)(28 55 83 108)(30 49 85 110)(32 51 87 112)(42 109 93 56)(44 111 95 50)(46 105 89 52)(48 107 91 54)(57 75 113 100)(59 77 115 102)(61 79 117 104)(63 73 119 98)

G:=sub<Sym(128)| (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,105)(10,106)(11,107)(12,108)(13,109)(14,110)(15,111)(16,112)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,73)(40,74)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,81)(48,82)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66)(113,124)(114,125)(115,126)(116,127)(117,128)(118,121)(119,122)(120,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,110,64,14)(2,109,57,13)(3,108,58,12)(4,107,59,11)(5,106,60,10)(6,105,61,9)(7,112,62,16)(8,111,63,15)(17,87,97,45)(18,86,98,44)(19,85,99,43)(20,84,100,42)(21,83,101,41)(22,82,102,48)(23,81,103,47)(24,88,104,46)(25,79,89,37)(26,78,90,36)(27,77,91,35)(28,76,92,34)(29,75,93,33)(30,74,94,40)(31,73,95,39)(32,80,96,38)(49,120,67,123)(50,119,68,122)(51,118,69,121)(52,117,70,128)(53,116,71,127)(54,115,72,126)(55,114,65,125)(56,113,66,124), (1,74,123,99)(2,33,124,20)(3,76,125,101)(4,35,126,22)(5,78,127,103)(6,37,128,24)(7,80,121,97)(8,39,122,18)(9,25,70,88)(10,90,71,47)(11,27,72,82)(12,92,65,41)(13,29,66,84)(14,94,67,43)(15,31,68,86)(16,96,69,45)(17,62,38,118)(19,64,40,120)(21,58,34,114)(23,60,36,116)(26,53,81,106)(28,55,83,108)(30,49,85,110)(32,51,87,112)(42,109,93,56)(44,111,95,50)(46,105,89,52)(48,107,91,54)(57,75,113,100)(59,77,115,102)(61,79,117,104)(63,73,119,98)>;

G:=Group( (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,105)(10,106)(11,107)(12,108)(13,109)(14,110)(15,111)(16,112)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,73)(40,74)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,81)(48,82)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66)(113,124)(114,125)(115,126)(116,127)(117,128)(118,121)(119,122)(120,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,110,64,14)(2,109,57,13)(3,108,58,12)(4,107,59,11)(5,106,60,10)(6,105,61,9)(7,112,62,16)(8,111,63,15)(17,87,97,45)(18,86,98,44)(19,85,99,43)(20,84,100,42)(21,83,101,41)(22,82,102,48)(23,81,103,47)(24,88,104,46)(25,79,89,37)(26,78,90,36)(27,77,91,35)(28,76,92,34)(29,75,93,33)(30,74,94,40)(31,73,95,39)(32,80,96,38)(49,120,67,123)(50,119,68,122)(51,118,69,121)(52,117,70,128)(53,116,71,127)(54,115,72,126)(55,114,65,125)(56,113,66,124), (1,74,123,99)(2,33,124,20)(3,76,125,101)(4,35,126,22)(5,78,127,103)(6,37,128,24)(7,80,121,97)(8,39,122,18)(9,25,70,88)(10,90,71,47)(11,27,72,82)(12,92,65,41)(13,29,66,84)(14,94,67,43)(15,31,68,86)(16,96,69,45)(17,62,38,118)(19,64,40,120)(21,58,34,114)(23,60,36,116)(26,53,81,106)(28,55,83,108)(30,49,85,110)(32,51,87,112)(42,109,93,56)(44,111,95,50)(46,105,89,52)(48,107,91,54)(57,75,113,100)(59,77,115,102)(61,79,117,104)(63,73,119,98) );

G=PermutationGroup([[(1,64),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,105),(10,106),(11,107),(12,108),(13,109),(14,110),(15,111),(16,112),(17,97),(18,98),(19,99),(20,100),(21,101),(22,102),(23,103),(24,104),(25,89),(26,90),(27,91),(28,92),(29,93),(30,94),(31,95),(32,96),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,73),(40,74),(41,83),(42,84),(43,85),(44,86),(45,87),(46,88),(47,81),(48,82),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,65),(56,66),(113,124),(114,125),(115,126),(116,127),(117,128),(118,121),(119,122),(120,123)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,110,64,14),(2,109,57,13),(3,108,58,12),(4,107,59,11),(5,106,60,10),(6,105,61,9),(7,112,62,16),(8,111,63,15),(17,87,97,45),(18,86,98,44),(19,85,99,43),(20,84,100,42),(21,83,101,41),(22,82,102,48),(23,81,103,47),(24,88,104,46),(25,79,89,37),(26,78,90,36),(27,77,91,35),(28,76,92,34),(29,75,93,33),(30,74,94,40),(31,73,95,39),(32,80,96,38),(49,120,67,123),(50,119,68,122),(51,118,69,121),(52,117,70,128),(53,116,71,127),(54,115,72,126),(55,114,65,125),(56,113,66,124)], [(1,74,123,99),(2,33,124,20),(3,76,125,101),(4,35,126,22),(5,78,127,103),(6,37,128,24),(7,80,121,97),(8,39,122,18),(9,25,70,88),(10,90,71,47),(11,27,72,82),(12,92,65,41),(13,29,66,84),(14,94,67,43),(15,31,68,86),(16,96,69,45),(17,62,38,118),(19,64,40,120),(21,58,34,114),(23,60,36,116),(26,53,81,106),(28,55,83,108),(30,49,85,110),(32,51,87,112),(42,109,93,56),(44,111,95,50),(46,105,89,52),(48,107,91,54),(57,75,113,100),(59,77,115,102),(61,79,117,104),(63,73,119,98)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4R4S4T4U4V8A···8H
order12···24···44···444448···8
size11···12···24···488884···4

38 irreducible representations

dim1111111222224
type++++++-++-
imageC1C2C2C2C2C2C4Q8D4D8C4○D4C4○D8C8.C22
kernelC2.D84C4C22.7C42C22.4Q16C4×C4⋊C4C23.65C23C2×C2.D8C2.D8C4⋊C4C22×C4C2×C4C2×C4C22C22
# reps1131118224842

Matrix representation of C2.D84C4 in GL6(𝔽17)

100000
010000
001000
000100
0000160
0000016
,
200000
090000
009000
000200
00001116
000016
,
080000
1500000
000200
009000
000074
00001310
,
1300000
0130000
0016000
0001600
000001
000010

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[2,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,2,0,0,0,0,0,0,11,1,0,0,0,0,16,6],[0,15,0,0,0,0,8,0,0,0,0,0,0,0,0,9,0,0,0,0,2,0,0,0,0,0,0,0,7,13,0,0,0,0,4,10],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2.D84C4 in GAP, Magma, Sage, TeX

C_2.D_8\rtimes_4C_4
% in TeX

G:=Group("C2.D8:4C4");
// GroupNames label

G:=SmallGroup(128,650);
// by ID

G=gap.SmallGroup(128,650);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,232,422,58,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=d^4=1,c^2=a,d*b*d^-1=a*b=b*a,d*c*d^-1=a*c=c*a,a*d=d*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽