Extensions 1→N→G→Q→1 with N=C22 and Q=D16

Direct product G=N×Q with N=C22 and Q=D16

Semidirect products G=N:Q with N=C22 and Q=D16
extensionφ:Q→Aut NdρLabelID
C221D16 = C167D4φ: D16/C16C2 ⊆ Aut C2264C2^2:1D16128,947
C222D16 = D87D4φ: D16/D8C2 ⊆ Aut C2232C2^2:2D16128,916

Non-split extensions G=N.Q with N=C22 and Q=D16
extensionφ:Q→Aut NdρLabelID
C22.1D16 = C4○D32φ: D16/C16C2 ⊆ Aut C22642C2^2.1D16128,994
C22.2D16 = C22.SD32φ: D16/D8C2 ⊆ Aut C2232C2^2.2D16128,79
C22.3D16 = D163C4φ: D16/D8C2 ⊆ Aut C22324C2^2.3D16128,150
C22.4D16 = C22.D16φ: D16/D8C2 ⊆ Aut C2264C2^2.4D16128,964
C22.5D16 = C32⋊C22φ: D16/D8C2 ⊆ Aut C22324+C2^2.5D16128,995
C22.6D16 = Q64⋊C2φ: D16/D8C2 ⊆ Aut C22644-C2^2.6D16128,996
C22.7D16 = C8.7C42central extension (φ=1)128C2^2.7D16128,112
C22.8D16 = D162C4central extension (φ=1)64C2^2.8D16128,147
C22.9D16 = Q322C4central extension (φ=1)128C2^2.9D16128,148
C22.10D16 = C323C4central extension (φ=1)128C2^2.10D16128,155
C22.11D16 = C324C4central extension (φ=1)128C2^2.11D16128,156
C22.12D16 = C2×C2.D16central extension (φ=1)64C2^2.12D16128,868
C22.13D16 = C2×C163C4central extension (φ=1)128C2^2.13D16128,888
C22.14D16 = C2×D32central extension (φ=1)64C2^2.14D16128,991
C22.15D16 = C2×SD64central extension (φ=1)64C2^2.15D16128,992
C22.16D16 = C2×Q64central extension (φ=1)128C2^2.16D16128,993