Copied to
clipboard

G = C2×C163C4order 128 = 27

Direct product of C2 and C163C4

direct product, p-group, metabelian, nilpotent (class 4), monomial

Aliases: C2×C163C4, C23.59D8, C22.6Q32, C22.13D16, (C2×C16)⋊13C4, C1610(C2×C4), (C2×C4).79D8, C2.2(C2×D16), C8.23(C4⋊C4), C8.14(C2×Q8), C4.5(C2×Q16), (C2×C8).45Q8, C2.2(C2×Q32), (C2×C8).248D4, (C2×C4).39Q16, C8.51(C22×C4), C4.16(C2.D8), C22.57(C2×D8), (C22×C16).10C2, (C2×C8).498C23, (C2×C16).79C22, (C22×C4).586D4, C2.D8.146C22, C22.22(C2.D8), (C22×C8).528C22, C4.50(C2×C4⋊C4), C2.11(C2×C2.D8), (C2×C8).222(C2×C4), (C2×C4).762(C2×D4), (C2×C2.D8).23C2, (C2×C4).142(C4⋊C4), SmallGroup(128,888)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C2×C163C4
C1C2C4C2×C4C2×C8C22×C8C22×C16 — C2×C163C4
C1C2C4C8 — C2×C163C4
C1C23C22×C4C22×C8 — C2×C163C4
C1C2C2C2C2C4C4C2×C8 — C2×C163C4

Generators and relations for C2×C163C4
 G = < a,b,c | a2=b16=c4=1, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 172 in 84 conjugacy classes, 60 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C16, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.D8, C2.D8, C2×C16, C2×C4⋊C4, C22×C8, C163C4, C2×C2.D8, C22×C16, C2×C163C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, C2.D8, D16, Q32, C2×C4⋊C4, C2×D8, C2×Q16, C163C4, C2×C2.D8, C2×D16, C2×Q32, C2×C163C4

Smallest permutation representation of C2×C163C4
Regular action on 128 points
Generators in S128
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 57)(9 58)(10 59)(11 60)(12 61)(13 62)(14 63)(15 64)(16 49)(17 110)(18 111)(19 112)(20 97)(21 98)(22 99)(23 100)(24 101)(25 102)(26 103)(27 104)(28 105)(29 106)(30 107)(31 108)(32 109)(33 79)(34 80)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(81 127)(82 128)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(91 121)(92 122)(93 123)(94 124)(95 125)(96 126)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 45 120 23)(2 44 121 22)(3 43 122 21)(4 42 123 20)(5 41 124 19)(6 40 125 18)(7 39 126 17)(8 38 127 32)(9 37 128 31)(10 36 113 30)(11 35 114 29)(12 34 115 28)(13 33 116 27)(14 48 117 26)(15 47 118 25)(16 46 119 24)(49 76 89 101)(50 75 90 100)(51 74 91 99)(52 73 92 98)(53 72 93 97)(54 71 94 112)(55 70 95 111)(56 69 96 110)(57 68 81 109)(58 67 82 108)(59 66 83 107)(60 65 84 106)(61 80 85 105)(62 79 86 104)(63 78 87 103)(64 77 88 102)

G:=sub<Sym(128)| (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,49)(17,110)(18,111)(19,112)(20,97)(21,98)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,79)(34,80)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(81,127)(82,128)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,45,120,23)(2,44,121,22)(3,43,122,21)(4,42,123,20)(5,41,124,19)(6,40,125,18)(7,39,126,17)(8,38,127,32)(9,37,128,31)(10,36,113,30)(11,35,114,29)(12,34,115,28)(13,33,116,27)(14,48,117,26)(15,47,118,25)(16,46,119,24)(49,76,89,101)(50,75,90,100)(51,74,91,99)(52,73,92,98)(53,72,93,97)(54,71,94,112)(55,70,95,111)(56,69,96,110)(57,68,81,109)(58,67,82,108)(59,66,83,107)(60,65,84,106)(61,80,85,105)(62,79,86,104)(63,78,87,103)(64,77,88,102)>;

G:=Group( (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,49)(17,110)(18,111)(19,112)(20,97)(21,98)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,79)(34,80)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(81,127)(82,128)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,45,120,23)(2,44,121,22)(3,43,122,21)(4,42,123,20)(5,41,124,19)(6,40,125,18)(7,39,126,17)(8,38,127,32)(9,37,128,31)(10,36,113,30)(11,35,114,29)(12,34,115,28)(13,33,116,27)(14,48,117,26)(15,47,118,25)(16,46,119,24)(49,76,89,101)(50,75,90,100)(51,74,91,99)(52,73,92,98)(53,72,93,97)(54,71,94,112)(55,70,95,111)(56,69,96,110)(57,68,81,109)(58,67,82,108)(59,66,83,107)(60,65,84,106)(61,80,85,105)(62,79,86,104)(63,78,87,103)(64,77,88,102) );

G=PermutationGroup([[(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,57),(9,58),(10,59),(11,60),(12,61),(13,62),(14,63),(15,64),(16,49),(17,110),(18,111),(19,112),(20,97),(21,98),(22,99),(23,100),(24,101),(25,102),(26,103),(27,104),(28,105),(29,106),(30,107),(31,108),(32,109),(33,79),(34,80),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(81,127),(82,128),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(91,121),(92,122),(93,123),(94,124),(95,125),(96,126)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,45,120,23),(2,44,121,22),(3,43,122,21),(4,42,123,20),(5,41,124,19),(6,40,125,18),(7,39,126,17),(8,38,127,32),(9,37,128,31),(10,36,113,30),(11,35,114,29),(12,34,115,28),(13,33,116,27),(14,48,117,26),(15,47,118,25),(16,46,119,24),(49,76,89,101),(50,75,90,100),(51,74,91,99),(52,73,92,98),(53,72,93,97),(54,71,94,112),(55,70,95,111),(56,69,96,110),(57,68,81,109),(58,67,82,108),(59,66,83,107),(60,65,84,106),(61,80,85,105),(62,79,86,104),(63,78,87,103),(64,77,88,102)]])

44 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4L8A···8H16A···16P
order12···244444···48···816···16
size11···122228···82···22···2

44 irreducible representations

dim1111122222222
type+++++-++-++-
imageC1C2C2C2C4D4Q8D4D8Q16D8D16Q32
kernelC2×C163C4C163C4C2×C2.D8C22×C16C2×C16C2×C8C2×C8C22×C4C2×C4C2×C4C23C22C22
# reps1421812124288

Matrix representation of C2×C163C4 in GL4(𝔽17) generated by

16000
0100
0010
0001
,
16000
01600
00100
00012
,
16000
0400
00016
00160
G:=sub<GL(4,GF(17))| [16,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,10,0,0,0,0,12],[16,0,0,0,0,4,0,0,0,0,0,16,0,0,16,0] >;

C2×C163C4 in GAP, Magma, Sage, TeX

C_2\times C_{16}\rtimes_3C_4
% in TeX

G:=Group("C2xC16:3C4");
// GroupNames label

G:=SmallGroup(128,888);
// by ID

G=gap.SmallGroup(128,888);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,288,1123,360,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^2=b^16=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽