p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8⋊7D4, C22⋊2D16, C23.44D8, (C2×D16)⋊1C2, C8⋊7D4⋊1C2, C8.60(C2×D4), (C2×C8).61D4, (C2×C4).30D8, C2.4(C2×D16), C2.D16⋊4C2, C22⋊C16⋊5C2, (C2×C16)⋊1C22, (C22×D8)⋊4C2, (C2×D8)⋊1C22, C2.D8⋊1C22, C4.16C22≀C2, C4.8(C8⋊C22), C22.94(C2×D8), C2.6(C16⋊C22), (C2×C8).508C23, (C22×C4).343D4, C2.24(C22⋊D8), (C22×C8).125C22, (C2×C4).776(C2×D4), SmallGroup(128,916)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8⋊7D4
G = < a,b,c,d | a8=b2=c4=d2=1, bab=cac-1=dad=a-1, cbc-1=dbd=a5b, dcd=c-1 >
Subgroups: 452 in 133 conjugacy classes, 36 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, D8, C22×C4, C2×D4, C24, D4⋊C4, C2.D8, C2×C16, D16, C4⋊D4, C22×C8, C2×D8, C2×D8, C2×D8, C22×D4, C22⋊C16, C2.D16, C8⋊7D4, C2×D16, C22×D8, D8⋊7D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, D16, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, C2×D16, C16⋊C22, D8⋊7D4
Character table of D8⋊7D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 16 | 2 | 2 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | ζ167-ζ16 | -ζ167+ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -ζ167+ζ16 | ζ167-ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ21 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -ζ165+ζ163 | ζ165-ζ163 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ22 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | ζ165-ζ163 | -ζ165+ζ163 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ23 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | ζ167-ζ16 | -ζ167+ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ24 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | ζ165-ζ163 | -ζ165+ζ163 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ25 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -ζ165+ζ163 | ζ165-ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ26 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -ζ167+ζ16 | ζ167-ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 24)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)
(1 30 17 12)(2 29 18 11)(3 28 19 10)(4 27 20 9)(5 26 21 16)(6 25 22 15)(7 32 23 14)(8 31 24 13)
(1 12)(2 11)(3 10)(4 9)(5 16)(6 15)(7 14)(8 13)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 32)(24 31)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25), (1,30,17,12)(2,29,18,11)(3,28,19,10)(4,27,20,9)(5,26,21,16)(6,25,22,15)(7,32,23,14)(8,31,24,13), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25), (1,30,17,12)(2,29,18,11)(3,28,19,10)(4,27,20,9)(5,26,21,16)(6,25,22,15)(7,32,23,14)(8,31,24,13), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,24),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25)], [(1,30,17,12),(2,29,18,11),(3,28,19,10),(4,27,20,9),(5,26,21,16),(6,25,22,15),(7,32,23,14),(8,31,24,13)], [(1,12),(2,11),(3,10),(4,9),(5,16),(6,15),(7,14),(8,13),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,32),(24,31)]])
Matrix representation of D8⋊7D4 ►in GL4(𝔽17) generated by
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
6 | 4 | 0 | 0 |
4 | 11 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
6 | 4 | 0 | 0 |
4 | 11 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(17))| [3,3,0,0,14,3,0,0,0,0,16,0,0,0,0,16],[0,16,0,0,16,0,0,0,0,0,16,0,0,0,0,1],[6,4,0,0,4,11,0,0,0,0,0,16,0,0,1,0],[6,4,0,0,4,11,0,0,0,0,0,1,0,0,1,0] >;
D8⋊7D4 in GAP, Magma, Sage, TeX
D_8\rtimes_7D_4
% in TeX
G:=Group("D8:7D4");
// GroupNames label
G:=SmallGroup(128,916);
// by ID
G=gap.SmallGroup(128,916);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,422,1123,570,360,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a^5*b,d*c*d=c^-1>;
// generators/relations
Export