p-group, metacyclic, nilpotent (class 4), monomial
Aliases: D16, C16⋊1C2, D8⋊1C2, C2.3D8, C4.1D4, C8.2C22, 2-Sylow(PGL(2,17)), sometimes denoted D32 or Dih16 or Dih32, SmallGroup(32,18)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D16
G = < a,b | a16=b2=1, bab=a-1 >
Character table of D16
class | 1 | 2A | 2B | 2C | 4 | 8A | 8B | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ8 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | orthogonal faithful |
ρ9 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | orthogonal faithful |
ρ10 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | orthogonal faithful |
ρ11 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]])
G:=TransitiveGroup(16,56);
D16 is a maximal subgroup of
SD64 C32⋊D16
D16p: D32 D48 D80 D112 D176 D208 ...
D8p⋊C2: C4○D16 C16⋊C22 C3⋊D16 C5⋊D16 C7⋊D16 C11⋊D16 C13⋊D16 ...
D16 is a maximal quotient of
C16⋊3C4 C32⋊D16
D16p: D32 D48 D80 D112 D176 D208 ...
C4p.D4: C2.D16 SD64 Q64 C3⋊D16 C5⋊D16 C7⋊D16 C11⋊D16 C13⋊D16 ...
Matrix representation of D16 ►in GL2(𝔽17) generated by
11 | 4 |
13 | 11 |
1 | 0 |
0 | 16 |
G:=sub<GL(2,GF(17))| [11,13,4,11],[1,0,0,16] >;
D16 in GAP, Magma, Sage, TeX
D_{16}
% in TeX
G:=Group("D16");
// GroupNames label
G:=SmallGroup(32,18);
// by ID
G=gap.SmallGroup(32,18);
# by ID
G:=PCGroup([5,-2,2,-2,-2,-2,61,182,97,102,483,248,58]);
// Polycyclic
G:=Group<a,b|a^16=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D16 in TeX
Character table of D16 in TeX