Extensions 1→N→G→Q→1 with N=C2 and Q=D8⋊C4

Direct product G=N×Q with N=C2 and Q=D8⋊C4
dρLabelID
C2×D8⋊C464C2xD8:C4128,1674


Non-split extensions G=N.Q with N=C2 and Q=D8⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(D8⋊C4) = D85C8central extension (φ=1)64C2.1(D8:C4)128,312
C2.2(D8⋊C4) = D4⋊C42central extension (φ=1)64C2.2(D8:C4)128,494
C2.3(D8⋊C4) = C8⋊C42central extension (φ=1)128C2.3(D8:C4)128,508
C2.4(D8⋊C4) = D42M4(2)central stem extension (φ=1)64C2.4(D8:C4)128,318
C2.5(D8⋊C4) = C83M4(2)central stem extension (φ=1)64C2.5(D8:C4)128,326
C2.6(D8⋊C4) = D4⋊(C4⋊C4)central stem extension (φ=1)64C2.6(D8:C4)128,596
C2.7(D8⋊C4) = (C2×C4)⋊9D8central stem extension (φ=1)64C2.7(D8:C4)128,611
C2.8(D8⋊C4) = C2.D85C4central stem extension (φ=1)128C2.8(D8:C4)128,653
C2.9(D8⋊C4) = C4.67(C4×D4)central stem extension (φ=1)64C2.9(D8:C4)128,658
C2.10(D8⋊C4) = C2.(C82D4)central stem extension (φ=1)64C2.10(D8:C4)128,668
C2.11(D8⋊C4) = C4.(C4×Q8)central stem extension (φ=1)128C2.11(D8:C4)128,675
C2.12(D8⋊C4) = (C2×D8)⋊10C4central stem extension (φ=1)64C2.12(D8:C4)128,704
C2.13(D8⋊C4) = Q32⋊C4central stem extension (φ=1)328-C2.13(D8:C4)128,912
C2.14(D8⋊C4) = D16⋊C4central stem extension (φ=1)168+C2.14(D8:C4)128,913

׿
×
𝔽