Copied to
clipboard

G = C4.(C4×Q8)  order 128 = 27

8th non-split extension by C4 of C4×Q8 acting via C4×Q8/C42=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C82(C4⋊C4), C4.8(C4×Q8), C2.D812C4, C2.2(C8⋊Q8), (C2×C8).12Q8, (C2×C8).110D4, C2.6(C8⋊D4), C23.790(C2×D4), (C22×C4).132D4, C22.176(C4×D4), C22.33(C4⋊Q8), C4.76(C22⋊Q8), C4.6(C42.C2), C2.11(D8⋊C4), C2.11(Q16⋊C4), C22.89(C8⋊C22), C22.4Q16.49C2, (C2×C42).307C22, (C22×C8).400C22, C22.136(C4⋊D4), (C22×C4).1392C23, C22.78(C8.C22), C23.65C23.12C2, C2.10(C23.65C23), C4.41(C2×C4⋊C4), C4⋊C4.89(C2×C4), (C2×C8).65(C2×C4), (C2×C8⋊C4).6C2, (C2×C4.Q8).5C2, (C2×C4).204(C2×Q8), (C2×C2.D8).34C2, (C2×C4).1349(C2×D4), (C2×C4⋊C4).76C22, (C2×C4).587(C4○D4), (C2×C4).410(C22×C4), SmallGroup(128,675)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C4.(C4×Q8)
C1C2C22C2×C4C22×C4C22×C8C2×C8⋊C4 — C4.(C4×Q8)
C1C2C2×C4 — C4.(C4×Q8)
C1C23C2×C42 — C4.(C4×Q8)
C1C2C2C22×C4 — C4.(C4×Q8)

Generators and relations for C4.(C4×Q8)
 G = < a,b,c,d | a4=c4=1, b4=a2, d2=ac2, ab=ba, cac-1=a-1, ad=da, cbc-1=a-1b, dbd-1=a2b, dcd-1=ac-1 >

Subgroups: 228 in 120 conjugacy classes, 64 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2.C42, C8⋊C4, C4.Q8, C2.D8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.4Q16, C23.65C23, C2×C8⋊C4, C2×C4.Q8, C2×C2.D8, C4.(C4×Q8)
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C4⋊C4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C42.C2, C4⋊Q8, C8⋊C22, C8.C22, C23.65C23, Q16⋊C4, D8⋊C4, C8⋊D4, C8⋊Q8, C4.(C4×Q8)

Smallest permutation representation of C4.(C4×Q8)
Regular action on 128 points
Generators in S128
(1 59 5 63)(2 60 6 64)(3 61 7 57)(4 62 8 58)(9 33 13 37)(10 34 14 38)(11 35 15 39)(12 36 16 40)(17 94 21 90)(18 95 22 91)(19 96 23 92)(20 89 24 93)(25 43 29 47)(26 44 30 48)(27 45 31 41)(28 46 32 42)(49 84 53 88)(50 85 54 81)(51 86 55 82)(52 87 56 83)(65 78 69 74)(66 79 70 75)(67 80 71 76)(68 73 72 77)(97 122 101 126)(98 123 102 127)(99 124 103 128)(100 125 104 121)(105 116 109 120)(106 117 110 113)(107 118 111 114)(108 119 112 115)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 105 95 80)(2 113 96 68)(3 111 89 78)(4 119 90 66)(5 109 91 76)(6 117 92 72)(7 107 93 74)(8 115 94 70)(9 102 42 86)(10 124 43 52)(11 100 44 84)(12 122 45 50)(13 98 46 82)(14 128 47 56)(15 104 48 88)(16 126 41 54)(17 75 62 108)(18 71 63 116)(19 73 64 106)(20 69 57 114)(21 79 58 112)(22 67 59 120)(23 77 60 110)(24 65 61 118)(25 87 38 103)(26 53 39 125)(27 85 40 101)(28 51 33 123)(29 83 34 99)(30 49 35 121)(31 81 36 97)(32 55 37 127)
(1 43 22 34 5 47 18 38)(2 48 23 39 6 44 19 35)(3 45 24 36 7 41 20 40)(4 42 17 33 8 46 21 37)(9 62 28 94 13 58 32 90)(10 59 29 91 14 63 25 95)(11 64 30 96 15 60 26 92)(12 61 31 93 16 57 27 89)(49 106 100 72 53 110 104 68)(50 111 101 69 54 107 97 65)(51 108 102 66 55 112 98 70)(52 105 103 71 56 109 99 67)(73 84 117 125 77 88 113 121)(74 81 118 122 78 85 114 126)(75 86 119 127 79 82 115 123)(76 83 120 124 80 87 116 128)

G:=sub<Sym(128)| (1,59,5,63)(2,60,6,64)(3,61,7,57)(4,62,8,58)(9,33,13,37)(10,34,14,38)(11,35,15,39)(12,36,16,40)(17,94,21,90)(18,95,22,91)(19,96,23,92)(20,89,24,93)(25,43,29,47)(26,44,30,48)(27,45,31,41)(28,46,32,42)(49,84,53,88)(50,85,54,81)(51,86,55,82)(52,87,56,83)(65,78,69,74)(66,79,70,75)(67,80,71,76)(68,73,72,77)(97,122,101,126)(98,123,102,127)(99,124,103,128)(100,125,104,121)(105,116,109,120)(106,117,110,113)(107,118,111,114)(108,119,112,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,105,95,80)(2,113,96,68)(3,111,89,78)(4,119,90,66)(5,109,91,76)(6,117,92,72)(7,107,93,74)(8,115,94,70)(9,102,42,86)(10,124,43,52)(11,100,44,84)(12,122,45,50)(13,98,46,82)(14,128,47,56)(15,104,48,88)(16,126,41,54)(17,75,62,108)(18,71,63,116)(19,73,64,106)(20,69,57,114)(21,79,58,112)(22,67,59,120)(23,77,60,110)(24,65,61,118)(25,87,38,103)(26,53,39,125)(27,85,40,101)(28,51,33,123)(29,83,34,99)(30,49,35,121)(31,81,36,97)(32,55,37,127), (1,43,22,34,5,47,18,38)(2,48,23,39,6,44,19,35)(3,45,24,36,7,41,20,40)(4,42,17,33,8,46,21,37)(9,62,28,94,13,58,32,90)(10,59,29,91,14,63,25,95)(11,64,30,96,15,60,26,92)(12,61,31,93,16,57,27,89)(49,106,100,72,53,110,104,68)(50,111,101,69,54,107,97,65)(51,108,102,66,55,112,98,70)(52,105,103,71,56,109,99,67)(73,84,117,125,77,88,113,121)(74,81,118,122,78,85,114,126)(75,86,119,127,79,82,115,123)(76,83,120,124,80,87,116,128)>;

G:=Group( (1,59,5,63)(2,60,6,64)(3,61,7,57)(4,62,8,58)(9,33,13,37)(10,34,14,38)(11,35,15,39)(12,36,16,40)(17,94,21,90)(18,95,22,91)(19,96,23,92)(20,89,24,93)(25,43,29,47)(26,44,30,48)(27,45,31,41)(28,46,32,42)(49,84,53,88)(50,85,54,81)(51,86,55,82)(52,87,56,83)(65,78,69,74)(66,79,70,75)(67,80,71,76)(68,73,72,77)(97,122,101,126)(98,123,102,127)(99,124,103,128)(100,125,104,121)(105,116,109,120)(106,117,110,113)(107,118,111,114)(108,119,112,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,105,95,80)(2,113,96,68)(3,111,89,78)(4,119,90,66)(5,109,91,76)(6,117,92,72)(7,107,93,74)(8,115,94,70)(9,102,42,86)(10,124,43,52)(11,100,44,84)(12,122,45,50)(13,98,46,82)(14,128,47,56)(15,104,48,88)(16,126,41,54)(17,75,62,108)(18,71,63,116)(19,73,64,106)(20,69,57,114)(21,79,58,112)(22,67,59,120)(23,77,60,110)(24,65,61,118)(25,87,38,103)(26,53,39,125)(27,85,40,101)(28,51,33,123)(29,83,34,99)(30,49,35,121)(31,81,36,97)(32,55,37,127), (1,43,22,34,5,47,18,38)(2,48,23,39,6,44,19,35)(3,45,24,36,7,41,20,40)(4,42,17,33,8,46,21,37)(9,62,28,94,13,58,32,90)(10,59,29,91,14,63,25,95)(11,64,30,96,15,60,26,92)(12,61,31,93,16,57,27,89)(49,106,100,72,53,110,104,68)(50,111,101,69,54,107,97,65)(51,108,102,66,55,112,98,70)(52,105,103,71,56,109,99,67)(73,84,117,125,77,88,113,121)(74,81,118,122,78,85,114,126)(75,86,119,127,79,82,115,123)(76,83,120,124,80,87,116,128) );

G=PermutationGroup([[(1,59,5,63),(2,60,6,64),(3,61,7,57),(4,62,8,58),(9,33,13,37),(10,34,14,38),(11,35,15,39),(12,36,16,40),(17,94,21,90),(18,95,22,91),(19,96,23,92),(20,89,24,93),(25,43,29,47),(26,44,30,48),(27,45,31,41),(28,46,32,42),(49,84,53,88),(50,85,54,81),(51,86,55,82),(52,87,56,83),(65,78,69,74),(66,79,70,75),(67,80,71,76),(68,73,72,77),(97,122,101,126),(98,123,102,127),(99,124,103,128),(100,125,104,121),(105,116,109,120),(106,117,110,113),(107,118,111,114),(108,119,112,115)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,105,95,80),(2,113,96,68),(3,111,89,78),(4,119,90,66),(5,109,91,76),(6,117,92,72),(7,107,93,74),(8,115,94,70),(9,102,42,86),(10,124,43,52),(11,100,44,84),(12,122,45,50),(13,98,46,82),(14,128,47,56),(15,104,48,88),(16,126,41,54),(17,75,62,108),(18,71,63,116),(19,73,64,106),(20,69,57,114),(21,79,58,112),(22,67,59,120),(23,77,60,110),(24,65,61,118),(25,87,38,103),(26,53,39,125),(27,85,40,101),(28,51,33,123),(29,83,34,99),(30,49,35,121),(31,81,36,97),(32,55,37,127)], [(1,43,22,34,5,47,18,38),(2,48,23,39,6,44,19,35),(3,45,24,36,7,41,20,40),(4,42,17,33,8,46,21,37),(9,62,28,94,13,58,32,90),(10,59,29,91,14,63,25,95),(11,64,30,96,15,60,26,92),(12,61,31,93,16,57,27,89),(49,106,100,72,53,110,104,68),(50,111,101,69,54,107,97,65),(51,108,102,66,55,112,98,70),(52,105,103,71,56,109,99,67),(73,84,117,125,77,88,113,121),(74,81,118,122,78,85,114,126),(75,86,119,127,79,82,115,123),(76,83,120,124,80,87,116,128)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim1111111222244
type+++++++-++-
imageC1C2C2C2C2C2C4D4Q8D4C4○D4C8⋊C22C8.C22
kernelC4.(C4×Q8)C22.4Q16C23.65C23C2×C8⋊C4C2×C4.Q8C2×C2.D8C2.D8C2×C8C2×C8C22×C4C2×C4C22C22
# reps1221118242422

Matrix representation of C4.(C4×Q8) in GL8(𝔽17)

160000000
016000000
00100000
00010000
00000100
000016000
000016161615
00001011
,
1315000000
164000000
001600000
000160000
0000123157
0000614911
0000135816
0000012140
,
130000000
164000000
00400000
000130000
000045711
000013133
00000101514
0000991612
,
160000000
016000000
00010000
001600000
000000160
00001112
000001600
0000160016

G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,16,1,0,0,0,0,1,0,16,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,15,1],[13,16,0,0,0,0,0,0,15,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,12,6,13,0,0,0,0,0,3,14,5,12,0,0,0,0,15,9,8,14,0,0,0,0,7,11,16,0],[13,16,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,4,1,0,9,0,0,0,0,5,3,10,9,0,0,0,0,7,13,15,16,0,0,0,0,11,3,14,12],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,16,0,0,0,0,0,1,16,0,0,0,0,0,16,1,0,0,0,0,0,0,0,2,0,16] >;

C4.(C4×Q8) in GAP, Magma, Sage, TeX

C_4.(C_4\times Q_8)
% in TeX

G:=Group("C4.(C4xQ8)");
// GroupNames label

G:=SmallGroup(128,675);
// by ID

G=gap.SmallGroup(128,675);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,232,422,723,100,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^4=1,b^4=a^2,d^2=a*c^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,d*b*d^-1=a^2*b,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽