p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊2M4(2), C42.643C23, C8⋊C8⋊5C2, D4⋊C8⋊34C2, (C8×D4)⋊35C2, C8⋊2C8⋊12C2, (C2×D8).7C4, C8⋊6D4⋊29C2, (C4×D8).12C2, C2.7(C8○D8), (C2×C8).308D4, C2.D8.11C4, D4⋊C4.8C4, C4.35(C8○D4), C2.4(D8⋊C4), C2.13(C8⋊9D4), C4⋊C8.277C22, (C4×C8).315C22, (C4×D4).11C22, C22.134(C4×D4), C4.29(C2×M4(2)), C4.144(C8⋊C22), C4⋊C4.137(C2×C4), (C2×C8).104(C2×C4), (C2×D4).155(C2×C4), (C2×C4).1479(C2×D4), (C2×C4).504(C4○D4), (C2×C4).335(C22×C4), SmallGroup(128,318)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊2M4(2)
G = < a,b,c,d | a4=b2=c8=d2=1, bab=cac-1=dad=a-1, cbc-1=ab, dbd=a-1b, dcd=c5 >
Subgroups: 184 in 91 conjugacy classes, 42 normal (40 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C2×D4, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C2.D8, C4×D4, C22×C8, C2×M4(2), C2×D8, C8⋊C8, D4⋊C8, C8⋊2C8, C8×D4, C8⋊6D4, C4×D8, D4⋊2M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, C4×D4, C2×M4(2), C8○D4, C8⋊C22, C8⋊9D4, D8⋊C4, C8○D8, D4⋊2M4(2)
(1 16 27 43)(2 44 28 9)(3 10 29 45)(4 46 30 11)(5 12 31 47)(6 48 32 13)(7 14 25 41)(8 42 26 15)(17 33 53 60)(18 61 54 34)(19 35 55 62)(20 63 56 36)(21 37 49 64)(22 57 50 38)(23 39 51 58)(24 59 52 40)
(1 63)(2 21)(3 57)(4 23)(5 59)(6 17)(7 61)(8 19)(9 37)(10 22)(11 39)(12 24)(13 33)(14 18)(15 35)(16 20)(25 34)(26 55)(27 36)(28 49)(29 38)(30 51)(31 40)(32 53)(41 54)(42 62)(43 56)(44 64)(45 50)(46 58)(47 52)(48 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 16)(2 13)(3 10)(4 15)(5 12)(6 9)(7 14)(8 11)(17 49)(18 54)(19 51)(20 56)(21 53)(22 50)(23 55)(24 52)(25 41)(26 46)(27 43)(28 48)(29 45)(30 42)(31 47)(32 44)(33 37)(35 39)(58 62)(60 64)
G:=sub<Sym(64)| (1,16,27,43)(2,44,28,9)(3,10,29,45)(4,46,30,11)(5,12,31,47)(6,48,32,13)(7,14,25,41)(8,42,26,15)(17,33,53,60)(18,61,54,34)(19,35,55,62)(20,63,56,36)(21,37,49,64)(22,57,50,38)(23,39,51,58)(24,59,52,40), (1,63)(2,21)(3,57)(4,23)(5,59)(6,17)(7,61)(8,19)(9,37)(10,22)(11,39)(12,24)(13,33)(14,18)(15,35)(16,20)(25,34)(26,55)(27,36)(28,49)(29,38)(30,51)(31,40)(32,53)(41,54)(42,62)(43,56)(44,64)(45,50)(46,58)(47,52)(48,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,49)(18,54)(19,51)(20,56)(21,53)(22,50)(23,55)(24,52)(25,41)(26,46)(27,43)(28,48)(29,45)(30,42)(31,47)(32,44)(33,37)(35,39)(58,62)(60,64)>;
G:=Group( (1,16,27,43)(2,44,28,9)(3,10,29,45)(4,46,30,11)(5,12,31,47)(6,48,32,13)(7,14,25,41)(8,42,26,15)(17,33,53,60)(18,61,54,34)(19,35,55,62)(20,63,56,36)(21,37,49,64)(22,57,50,38)(23,39,51,58)(24,59,52,40), (1,63)(2,21)(3,57)(4,23)(5,59)(6,17)(7,61)(8,19)(9,37)(10,22)(11,39)(12,24)(13,33)(14,18)(15,35)(16,20)(25,34)(26,55)(27,36)(28,49)(29,38)(30,51)(31,40)(32,53)(41,54)(42,62)(43,56)(44,64)(45,50)(46,58)(47,52)(48,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,49)(18,54)(19,51)(20,56)(21,53)(22,50)(23,55)(24,52)(25,41)(26,46)(27,43)(28,48)(29,45)(30,42)(31,47)(32,44)(33,37)(35,39)(58,62)(60,64) );
G=PermutationGroup([[(1,16,27,43),(2,44,28,9),(3,10,29,45),(4,46,30,11),(5,12,31,47),(6,48,32,13),(7,14,25,41),(8,42,26,15),(17,33,53,60),(18,61,54,34),(19,35,55,62),(20,63,56,36),(21,37,49,64),(22,57,50,38),(23,39,51,58),(24,59,52,40)], [(1,63),(2,21),(3,57),(4,23),(5,59),(6,17),(7,61),(8,19),(9,37),(10,22),(11,39),(12,24),(13,33),(14,18),(15,35),(16,20),(25,34),(26,55),(27,36),(28,49),(29,38),(30,51),(31,40),(32,53),(41,54),(42,62),(43,56),(44,64),(45,50),(46,58),(47,52),(48,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,16),(2,13),(3,10),(4,15),(5,12),(6,9),(7,14),(8,11),(17,49),(18,54),(19,51),(20,56),(21,53),(22,50),(23,55),(24,52),(25,41),(26,46),(27,43),(28,48),(29,45),(30,42),(31,47),(32,44),(33,37),(35,39),(58,62),(60,64)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | ··· | 8R | 8S | 8T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | C4○D4 | M4(2) | C8○D4 | C8○D8 | C8⋊C22 |
kernel | D4⋊2M4(2) | C8⋊C8 | D4⋊C8 | C8⋊2C8 | C8×D4 | C8⋊6D4 | C4×D8 | D4⋊C4 | C2.D8 | C2×D8 | C2×C8 | C2×C4 | D4 | C4 | C2 | C4 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 2 |
Matrix representation of D4⋊2M4(2) ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
14 | 3 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
15 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 15 | 2 |
0 | 0 | 0 | 2 |
0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 2 | 16 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[14,3,0,0,3,3,0,0,0,0,16,0,0,0,0,16],[15,0,0,0,0,2,0,0,0,0,15,0,0,0,2,2],[0,16,0,0,16,0,0,0,0,0,1,2,0,0,0,16] >;
D4⋊2M4(2) in GAP, Magma, Sage, TeX
D_4\rtimes_2M_4(2)
% in TeX
G:=Group("D4:2M4(2)");
// GroupNames label
G:=SmallGroup(128,318);
// by ID
G=gap.SmallGroup(128,318);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,2102,268,1123,570,136,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a*b,d*b*d=a^-1*b,d*c*d=c^5>;
// generators/relations