Copied to
clipboard

G = D85C8order 128 = 27

5th semidirect product of D8 and C8 acting via C8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D85C8, C42.637C23, C83(C2×C8), D4⋊C85C2, (C8×D4)⋊2C2, D42(C2×C8), C8⋊C83C2, C2.9(C8×D4), C82C811C2, (C4×D8).15C2, (C2×D8).11C4, (C2×C8).306D4, C2.D8.19C4, C4.12(C8○D4), C4.12(C22×C8), (C4×C8).13C22, C22.82(C4×D4), D4⋊C4.10C4, C2.1(D8⋊C4), C2.3(C8.26D4), C4⋊C8.275C22, C4.142(C8⋊C22), (C4×D4).271C22, C4⋊C4.131(C2×C4), (C2×C8).125(C2×C4), (C2×D4).151(C2×C4), (C2×C4).1473(C2×D4), (C2×C4).498(C4○D4), (C2×C4).329(C22×C4), SmallGroup(128,312)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — D85C8
C1C2C22C2×C4C42C4×C8C8×D4 — D85C8
C1C2C4 — D85C8
C1C2×C4C4×C8 — D85C8
C1C22C22C42 — D85C8

Generators and relations for D85C8
 G = < a,b,c | a8=b2=c8=1, bab=a-1, cac-1=a5, cbc-1=a4b >

Subgroups: 184 in 96 conjugacy classes, 50 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, D8, C22×C4, C2×D4, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C2.D8, C4×D4, C22×C8, C2×D8, C8⋊C8, D4⋊C8, C82C8, C8×D4, C4×D8, D85C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C2×C8, C22×C4, C2×D4, C4○D4, C4×D4, C22×C8, C8○D4, C8⋊C22, C8×D4, D8⋊C4, C8.26D4, D85C8

Smallest permutation representation of D85C8
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 32)(9 35)(10 34)(11 33)(12 40)(13 39)(14 38)(15 37)(16 36)(17 49)(18 56)(19 55)(20 54)(21 53)(22 52)(23 51)(24 50)(41 60)(42 59)(43 58)(44 57)(45 64)(46 63)(47 62)(48 61)
(1 38 42 21 31 10 59 49)(2 35 43 18 32 15 60 54)(3 40 44 23 25 12 61 51)(4 37 45 20 26 9 62 56)(5 34 46 17 27 14 63 53)(6 39 47 22 28 11 64 50)(7 36 48 19 29 16 57 55)(8 33 41 24 30 13 58 52)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,32)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(17,49)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(41,60)(42,59)(43,58)(44,57)(45,64)(46,63)(47,62)(48,61), (1,38,42,21,31,10,59,49)(2,35,43,18,32,15,60,54)(3,40,44,23,25,12,61,51)(4,37,45,20,26,9,62,56)(5,34,46,17,27,14,63,53)(6,39,47,22,28,11,64,50)(7,36,48,19,29,16,57,55)(8,33,41,24,30,13,58,52)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,32)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(17,49)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(41,60)(42,59)(43,58)(44,57)(45,64)(46,63)(47,62)(48,61), (1,38,42,21,31,10,59,49)(2,35,43,18,32,15,60,54)(3,40,44,23,25,12,61,51)(4,37,45,20,26,9,62,56)(5,34,46,17,27,14,63,53)(6,39,47,22,28,11,64,50)(7,36,48,19,29,16,57,55)(8,33,41,24,30,13,58,52) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,32),(9,35),(10,34),(11,33),(12,40),(13,39),(14,38),(15,37),(16,36),(17,49),(18,56),(19,55),(20,54),(21,53),(22,52),(23,51),(24,50),(41,60),(42,59),(43,58),(44,57),(45,64),(46,63),(47,62),(48,61)], [(1,38,42,21,31,10,59,49),(2,35,43,18,32,15,60,54),(3,40,44,23,25,12,61,51),(4,37,45,20,26,9,62,56),(5,34,46,17,27,14,63,53),(6,39,47,22,28,11,64,50),(7,36,48,19,29,16,57,55),(8,33,41,24,30,13,58,52)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L8A···8H8I···8X
order122222224444444444448···88···8
size111144441111222244442···24···4

44 irreducible representations

dim111111111122244
type++++++++
imageC1C2C2C2C2C2C4C4C4C8D4C4○D4C8○D4C8⋊C22C8.26D4
kernelD85C8C8⋊C8D4⋊C8C82C8C8×D4C4×D8D4⋊C4C2.D8C2×D8D8C2×C8C2×C4C4C4C2
# reps1121214221622422

Matrix representation of D85C8 in GL6(𝔽17)

140000
8160000
00314116
0031406
003300
003030
,
16130000
010000
001000
0001600
0000160
00016161
,
800000
080000
000010
00161115
001000
0000016

G:=sub<GL(6,GF(17))| [1,8,0,0,0,0,4,16,0,0,0,0,0,0,3,3,3,3,0,0,14,14,3,0,0,0,11,0,0,3,0,0,6,6,0,0],[16,0,0,0,0,0,13,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,16,0,0,0,0,16,16,0,0,0,0,0,1],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,16,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,15,0,16] >;

D85C8 in GAP, Magma, Sage, TeX

D_8\rtimes_5C_8
% in TeX

G:=Group("D8:5C8");
// GroupNames label

G:=SmallGroup(128,312);
// by ID

G=gap.SmallGroup(128,312);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,758,268,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^2=c^8=1,b*a*b=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^4*b>;
// generators/relations

׿
×
𝔽