Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C8⋊C4

Direct product G=N×Q with N=C2 and Q=C2×C8⋊C4
dρLabelID
C22×C8⋊C4128C2^2xC8:C4128,1602


Non-split extensions G=N.Q with N=C2 and Q=C2×C8⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C8⋊C4) = C2×C8⋊C8central extension (φ=1)128C2.1(C2xC8:C4)128,180
C2.2(C2×C8⋊C4) = C4×C8⋊C4central extension (φ=1)128C2.2(C2xC8:C4)128,457
C2.3(C2×C8⋊C4) = C2×C22.7C42central extension (φ=1)128C2.3(C2xC8:C4)128,459
C2.4(C2×C8⋊C4) = C424C8central extension (φ=1)128C2.4(C2xC8:C4)128,476
C2.5(C2×C8⋊C4) = C89M4(2)central stem extension (φ=1)64C2.5(C2xC8:C4)128,183
C2.6(C2×C8⋊C4) = C23.27C42central stem extension (φ=1)64C2.6(C2xC8:C4)128,184
C2.7(C2×C8⋊C4) = C42.378D4central stem extension (φ=1)64C2.7(C2xC8:C4)128,481
C2.8(C2×C8⋊C4) = C23.36C42central stem extension (φ=1)64C2.8(C2xC8:C4)128,484
C2.9(C2×C8⋊C4) = C43.7C2central stem extension (φ=1)128C2.9(C2xC8:C4)128,499
C2.10(C2×C8⋊C4) = C4⋊C813C4central stem extension (φ=1)128C2.10(C2xC8:C4)128,502
C2.11(C2×C8⋊C4) = C2×C16⋊C4central stem extension (φ=1)32C2.11(C2xC8:C4)128,841
C2.12(C2×C8⋊C4) = C8.23C42central stem extension (φ=1)324C2.12(C2xC8:C4)128,842

׿
×
𝔽