direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C8⋊C8, C23.40C42, C42.740C23, C8⋊9(C2×C8), (C2×C8)⋊8C8, C4○(C8⋊C8), (C4×C8).15C4, C4.13(C4×C8), C42○(C8⋊C8), (C2×C4).85C42, C4.31(C22×C8), (C22×C8).42C4, C22.15(C4×C8), C4.16(C8⋊C4), (C4×C8).358C22, C42.337(C2×C4), C4.55(C2×M4(2)), (C2×C4).87M4(2), C22.20(C2×C42), C22.13(C8⋊C4), (C2×C42).1142C22, C2.1(C2×C4×C8), (C2×C4×C8).6C2, (C2×C4)○(C8⋊C8), C2.1(C2×C8⋊C4), (C2×C4).98(C2×C8), (C2×C8).199(C2×C4), (C2×C4).577(C22×C4), (C22×C4).502(C2×C4), SmallGroup(128,180)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C8⋊C8
G = < a,b,c | a2=b8=c8=1, ab=ba, ac=ca, cbc-1=b5 >
Subgroups: 140 in 124 conjugacy classes, 108 normal (12 characteristic)
C1, C2, C2, C4, C22, C22, C8, C8, C2×C4, C2×C4, C23, C42, C42, C2×C8, C2×C8, C22×C4, C22×C4, C4×C8, C2×C42, C22×C8, C8⋊C8, C2×C4×C8, C2×C4×C8, C2×C8⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C42, C2×C8, M4(2), C22×C4, C4×C8, C8⋊C4, C2×C42, C22×C8, C2×M4(2), C8⋊C8, C2×C4×C8, C2×C8⋊C4, C2×C8⋊C8
(1 37)(2 38)(3 39)(4 40)(5 33)(6 34)(7 35)(8 36)(9 83)(10 84)(11 85)(12 86)(13 87)(14 88)(15 81)(16 82)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 25)(41 112)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 72)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 80)(58 73)(59 74)(60 75)(61 76)(62 77)(63 78)(64 79)(89 124)(90 125)(91 126)(92 127)(93 128)(94 121)(95 122)(96 123)(97 116)(98 117)(99 118)(100 119)(101 120)(102 113)(103 114)(104 115)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 97 20 85 42 57 72 125)(2 102 21 82 43 62 65 122)(3 99 22 87 44 59 66 127)(4 104 23 84 45 64 67 124)(5 101 24 81 46 61 68 121)(6 98 17 86 47 58 69 126)(7 103 18 83 48 63 70 123)(8 100 19 88 41 60 71 128)(9 111 78 55 96 35 114 27)(10 108 79 52 89 40 115 32)(11 105 80 49 90 37 116 29)(12 110 73 54 91 34 117 26)(13 107 74 51 92 39 118 31)(14 112 75 56 93 36 119 28)(15 109 76 53 94 33 120 25)(16 106 77 50 95 38 113 30)
G:=sub<Sym(128)| (1,37)(2,38)(3,39)(4,40)(5,33)(6,34)(7,35)(8,36)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,81)(16,82)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25)(41,112)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,72)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,80)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(89,124)(90,125)(91,126)(92,127)(93,128)(94,121)(95,122)(96,123)(97,116)(98,117)(99,118)(100,119)(101,120)(102,113)(103,114)(104,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,97,20,85,42,57,72,125)(2,102,21,82,43,62,65,122)(3,99,22,87,44,59,66,127)(4,104,23,84,45,64,67,124)(5,101,24,81,46,61,68,121)(6,98,17,86,47,58,69,126)(7,103,18,83,48,63,70,123)(8,100,19,88,41,60,71,128)(9,111,78,55,96,35,114,27)(10,108,79,52,89,40,115,32)(11,105,80,49,90,37,116,29)(12,110,73,54,91,34,117,26)(13,107,74,51,92,39,118,31)(14,112,75,56,93,36,119,28)(15,109,76,53,94,33,120,25)(16,106,77,50,95,38,113,30)>;
G:=Group( (1,37)(2,38)(3,39)(4,40)(5,33)(6,34)(7,35)(8,36)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,81)(16,82)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25)(41,112)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,72)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,80)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(89,124)(90,125)(91,126)(92,127)(93,128)(94,121)(95,122)(96,123)(97,116)(98,117)(99,118)(100,119)(101,120)(102,113)(103,114)(104,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,97,20,85,42,57,72,125)(2,102,21,82,43,62,65,122)(3,99,22,87,44,59,66,127)(4,104,23,84,45,64,67,124)(5,101,24,81,46,61,68,121)(6,98,17,86,47,58,69,126)(7,103,18,83,48,63,70,123)(8,100,19,88,41,60,71,128)(9,111,78,55,96,35,114,27)(10,108,79,52,89,40,115,32)(11,105,80,49,90,37,116,29)(12,110,73,54,91,34,117,26)(13,107,74,51,92,39,118,31)(14,112,75,56,93,36,119,28)(15,109,76,53,94,33,120,25)(16,106,77,50,95,38,113,30) );
G=PermutationGroup([[(1,37),(2,38),(3,39),(4,40),(5,33),(6,34),(7,35),(8,36),(9,83),(10,84),(11,85),(12,86),(13,87),(14,88),(15,81),(16,82),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,25),(41,112),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,72),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,80),(58,73),(59,74),(60,75),(61,76),(62,77),(63,78),(64,79),(89,124),(90,125),(91,126),(92,127),(93,128),(94,121),(95,122),(96,123),(97,116),(98,117),(99,118),(100,119),(101,120),(102,113),(103,114),(104,115)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,97,20,85,42,57,72,125),(2,102,21,82,43,62,65,122),(3,99,22,87,44,59,66,127),(4,104,23,84,45,64,67,124),(5,101,24,81,46,61,68,121),(6,98,17,86,47,58,69,126),(7,103,18,83,48,63,70,123),(8,100,19,88,41,60,71,128),(9,111,78,55,96,35,114,27),(10,108,79,52,89,40,115,32),(11,105,80,49,90,37,116,29),(12,110,73,54,91,34,117,26),(13,107,74,51,92,39,118,31),(14,112,75,56,93,36,119,28),(15,109,76,53,94,33,120,25),(16,106,77,50,95,38,113,30)]])
80 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4X | 8A | ··· | 8AV |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | ||||
image | C1 | C2 | C2 | C4 | C4 | C8 | M4(2) |
kernel | C2×C8⋊C8 | C8⋊C8 | C2×C4×C8 | C4×C8 | C22×C8 | C2×C8 | C2×C4 |
# reps | 1 | 4 | 3 | 12 | 12 | 32 | 16 |
Matrix representation of C2×C8⋊C8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 8 |
2 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 13 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,9,0,0,0,0,8],[2,0,0,0,0,4,0,0,0,0,0,13,0,0,16,0] >;
C2×C8⋊C8 in GAP, Magma, Sage, TeX
C_2\times C_8\rtimes C_8
% in TeX
G:=Group("C2xC8:C8");
// GroupNames label
G:=SmallGroup(128,180);
// by ID
G=gap.SmallGroup(128,180);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,56,477,120,136,172]);
// Polycyclic
G:=Group<a,b,c|a^2=b^8=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations