direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C8⋊C4, C4.8C42, C42.5C4, C22.9C42, C42.58C22, C22.8M4(2), C8⋊9(C2×C4), (C2×C8)⋊8C4, C4○(C8⋊C4), C2.5(C2×C42), (C22×C4).9C4, (C2×C42).5C2, C23.38(C2×C4), (C22×C8).14C2, (C2×C8).97C22, C4.32(C22×C4), C2.1(C2×M4(2)), (C2×C4).141C23, C22.17(C22×C4), (C22×C4).135C22, (C2×C4)○(C8⋊C4), (C2×C4).83(C2×C4), SmallGroup(64,84)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C8⋊C4
G = < a,b,c | a2=b8=c4=1, ab=ba, ac=ca, cbc-1=b5 >
Subgroups: 81 in 73 conjugacy classes, 65 normal (9 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C22×C4, C22×C4, C8⋊C4, C2×C42, C22×C8, C2×C8⋊C4
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, M4(2), C22×C4, C8⋊C4, C2×C42, C2×M4(2), C2×C8⋊C4
(1 52)(2 53)(3 54)(4 55)(5 56)(6 49)(7 50)(8 51)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 62)(18 63)(19 64)(20 57)(21 58)(22 59)(23 60)(24 61)(25 46)(26 47)(27 48)(28 41)(29 42)(30 43)(31 44)(32 45)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 26 59 9)(2 31 60 14)(3 28 61 11)(4 25 62 16)(5 30 63 13)(6 27 64 10)(7 32 57 15)(8 29 58 12)(17 40 55 46)(18 37 56 43)(19 34 49 48)(20 39 50 45)(21 36 51 42)(22 33 52 47)(23 38 53 44)(24 35 54 41)
G:=sub<Sym(64)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,59,9)(2,31,60,14)(3,28,61,11)(4,25,62,16)(5,30,63,13)(6,27,64,10)(7,32,57,15)(8,29,58,12)(17,40,55,46)(18,37,56,43)(19,34,49,48)(20,39,50,45)(21,36,51,42)(22,33,52,47)(23,38,53,44)(24,35,54,41)>;
G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,59,9)(2,31,60,14)(3,28,61,11)(4,25,62,16)(5,30,63,13)(6,27,64,10)(7,32,57,15)(8,29,58,12)(17,40,55,46)(18,37,56,43)(19,34,49,48)(20,39,50,45)(21,36,51,42)(22,33,52,47)(23,38,53,44)(24,35,54,41) );
G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,49),(7,50),(8,51),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,62),(18,63),(19,64),(20,57),(21,58),(22,59),(23,60),(24,61),(25,46),(26,47),(27,48),(28,41),(29,42),(30,43),(31,44),(32,45)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,26,59,9),(2,31,60,14),(3,28,61,11),(4,25,62,16),(5,30,63,13),(6,27,64,10),(7,32,57,15),(8,29,58,12),(17,40,55,46),(18,37,56,43),(19,34,49,48),(20,39,50,45),(21,36,51,42),(22,33,52,47),(23,38,53,44),(24,35,54,41)]])
C2×C8⋊C4 is a maximal subgroup of
C42.20D4 C42.2Q8 C42.7Q8 C42.370D4 C42.2C8 M5(2)⋊C4 C42.66D4 C42.67D4 C42.68D4 C42.69D4 C2.C43 C43.C2 (C4×C8)⋊12C4 C42.378D4 C42.379D4 C23.36C42 C23.17C42 D4⋊C42 Q8⋊C42 D4.3C42 C43.7C2 C42.45Q8 C4⋊C8⋊13C4 C4⋊C8⋊14C4 C8.5C42 C8⋊C42 C8.6C42 C42.24Q8 C42.104D4 C42.26Q8 C42.106D4 (C2×C8).Q8 C23.9M4(2) C2.(C8⋊D4) C2.(C8⋊2D4) C42.107D4 C42.27Q8 C4.(C4×Q8) C8⋊(C4⋊C4) C42.28Q8 C42.109D4 C42.110D4 C42.111D4 C42.112D4 (C2×Q16)⋊10C4 (C2×D8)⋊10C4 C8⋊(C22⋊C4) C42.116D4 C42.120D4 C42.124D4 C42.125D4 C2×C4×M4(2) D4.5C42 C42.261C23 C42.266C23 C42.383D4 C42.287C23 C42.293C23 D4⋊6M4(2) C42.239D4 C42.247D4 C42.252D4 C42.257D4 C42.258D4 C42.5F5
C2×C8⋊C4 is a maximal quotient of
C8⋊9M4(2) C23.27C42 C42⋊4C8 C42.378D4 C23.36C42 C43.7C2 C4⋊C8⋊13C4 C8.23C42 C42.5F5
40 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 4I | ··· | 4P | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | M4(2) |
kernel | C2×C8⋊C4 | C8⋊C4 | C2×C42 | C22×C8 | C42 | C2×C8 | C22×C4 | C22 |
# reps | 1 | 4 | 1 | 2 | 4 | 16 | 4 | 8 |
Matrix representation of C2×C8⋊C4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 10 | 10 |
0 | 0 | 10 | 7 |
1 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,4,0,0,0,0,10,10,0,0,10,7],[1,0,0,0,0,13,0,0,0,0,0,16,0,0,1,0] >;
C2×C8⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_8\rtimes C_4
% in TeX
G:=Group("C2xC8:C4");
// GroupNames label
G:=SmallGroup(64,84);
// by ID
G=gap.SmallGroup(64,84);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,48,409,103,117]);
// Polycyclic
G:=Group<a,b,c|a^2=b^8=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations