Copied to
clipboard

G = C23.195C24order 128 = 27

48th central extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.195C24, C24.543C23, C22.342+ 1+4, C22.202- 1+4, (C2×C42).10C22, C22.86(C23×C4), C23.221(C4○D4), (C23×C4).287C22, C23.211(C22×C4), (C22×C4).460C23, C23.34D4.8C2, C23.7Q8.23C2, C23.63C231C2, C2.8(C22.11C24), C22.36(C42⋊C2), C2.C42.33C22, C2.5(C23.32C23), C2.1(C22.33C24), (C2×C4⋊C4)⋊34C4, C4⋊C4.201(C2×C4), (C4×C22⋊C4).5C2, (C22×C4⋊C4).24C2, C22.83(C2×C4○D4), (C2×C4⋊C4).171C22, (C2×C4).218(C22×C4), (C22×C4).132(C2×C4), C2.20(C2×C42⋊C2), (C2×C22⋊C4).423C22, SmallGroup(128,1045)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C23.195C24
C1C2C22C23C24C23×C4C22×C4⋊C4 — C23.195C24
C1C22 — C23.195C24
C1C23 — C23.195C24
C1C23 — C23.195C24

Generators and relations for C23.195C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=c, e2=b, f2=a, ab=ba, ac=ca, ede-1=gdg=ad=da, fef-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 428 in 256 conjugacy classes, 140 normal (12 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×20], C22, C22 [×10], C22 [×12], C2×C4 [×12], C2×C4 [×52], C23, C23 [×6], C23 [×4], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×16], C4⋊C4 [×4], C22×C4 [×26], C22×C4 [×8], C24, C2.C42 [×16], C2×C42 [×4], C2×C22⋊C4 [×4], C2×C4⋊C4 [×16], C23×C4 [×3], C4×C22⋊C4 [×2], C23.7Q8 [×2], C23.34D4 [×2], C23.63C23 [×8], C22×C4⋊C4, C23.195C24
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C4○D4 [×4], C24, C42⋊C2 [×4], C23×C4, C2×C4○D4 [×2], 2+ 1+4 [×2], 2- 1+4 [×2], C2×C42⋊C2, C22.11C24, C23.32C23, C22.33C24 [×4], C23.195C24

Smallest permutation representation of C23.195C24
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 51 47)(2 32 52 20)(3 57 49 45)(4 30 50 18)(5 42 36 54)(6 15 33 27)(7 44 34 56)(8 13 35 25)(9 29 21 17)(10 58 22 46)(11 31 23 19)(12 60 24 48)(14 62 26 38)(16 64 28 40)(37 41 61 53)(39 43 63 55)
(1 15 11 43)(2 28 12 56)(3 13 9 41)(4 26 10 54)(5 58 38 30)(6 47 39 19)(7 60 40 32)(8 45 37 17)(14 22 42 50)(16 24 44 52)(18 36 46 62)(20 34 48 64)(21 53 49 25)(23 55 51 27)(29 35 57 61)(31 33 59 63)
(1 3)(2 10)(4 12)(5 40)(6 8)(7 38)(9 11)(13 15)(14 44)(16 42)(17 19)(18 48)(20 46)(21 23)(22 52)(24 50)(25 27)(26 56)(28 54)(29 31)(30 60)(32 58)(33 35)(34 62)(36 64)(37 39)(41 43)(45 47)(49 51)(53 55)(57 59)(61 63)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (1,15,11,43)(2,28,12,56)(3,13,9,41)(4,26,10,54)(5,58,38,30)(6,47,39,19)(7,60,40,32)(8,45,37,17)(14,22,42,50)(16,24,44,52)(18,36,46,62)(20,34,48,64)(21,53,49,25)(23,55,51,27)(29,35,57,61)(31,33,59,63), (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (1,15,11,43)(2,28,12,56)(3,13,9,41)(4,26,10,54)(5,58,38,30)(6,47,39,19)(7,60,40,32)(8,45,37,17)(14,22,42,50)(16,24,44,52)(18,36,46,62)(20,34,48,64)(21,53,49,25)(23,55,51,27)(29,35,57,61)(31,33,59,63), (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63) );

G=PermutationGroup([(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,51,47),(2,32,52,20),(3,57,49,45),(4,30,50,18),(5,42,36,54),(6,15,33,27),(7,44,34,56),(8,13,35,25),(9,29,21,17),(10,58,22,46),(11,31,23,19),(12,60,24,48),(14,62,26,38),(16,64,28,40),(37,41,61,53),(39,43,63,55)], [(1,15,11,43),(2,28,12,56),(3,13,9,41),(4,26,10,54),(5,58,38,30),(6,47,39,19),(7,60,40,32),(8,45,37,17),(14,22,42,50),(16,24,44,52),(18,36,46,62),(20,34,48,64),(21,53,49,25),(23,55,51,27),(29,35,57,61),(31,33,59,63)], [(1,3),(2,10),(4,12),(5,40),(6,8),(7,38),(9,11),(13,15),(14,44),(16,42),(17,19),(18,48),(20,46),(21,23),(22,52),(24,50),(25,27),(26,56),(28,54),(29,31),(30,60),(32,58),(33,35),(34,62),(36,64),(37,39),(41,43),(45,47),(49,51),(53,55),(57,59),(61,63)])

44 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AF
order12···222224···44···4
size11···122222···24···4

44 irreducible representations

dim1111111244
type+++++++-
imageC1C2C2C2C2C2C4C4○D42+ 1+42- 1+4
kernelC23.195C24C4×C22⋊C4C23.7Q8C23.34D4C23.63C23C22×C4⋊C4C2×C4⋊C4C23C22C22
# reps12228116822

Matrix representation of C23.195C24 in GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000040
00000004
,
40000000
04000000
00100000
00010000
00001000
00000100
00000010
00000001
,
20000000
03000000
00400000
00010000
00000010
00000001
00001000
00000100
,
20000000
02000000
00300000
00030000
00003000
00000200
00000020
00000003
,
01000000
10000000
00040000
00400000
00000100
00004000
00000004
00000010
,
10000000
01000000
00400000
00040000
00001000
00000100
00000040
00000004

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4] >;

C23.195C24 in GAP, Magma, Sage, TeX

C_2^3._{195}C_2^4
% in TeX

G:=Group("C2^3.195C2^4");
// GroupNames label

G:=SmallGroup(128,1045);
// by ID

G=gap.SmallGroup(128,1045);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,219,100,675]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=c,e^2=b,f^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g=a*d=d*a,f*e*f^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽