Copied to
clipboard

G = C138order 138 = 2·3·23

Cyclic group

direct product, cyclic, abelian, monomial

Aliases: C138, also denoted Z138, SmallGroup(138,4)

Series: Derived Chief Lower central Upper central

C1 — C138
C1C23C69 — C138
C1 — C138
C1 — C138

Generators and relations for C138
 G = < a | a138=1 >


Smallest permutation representation of C138
Regular action on 138 points
Generators in S138
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)

G:=sub<Sym(138)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)]])

C138 is a maximal subgroup of   Dic69

138 conjugacy classes

class 1  2 3A3B6A6B23A···23V46A···46V69A···69AR138A···138AR
order12336623···2346···4669···69138···138
size1111111···11···11···11···1

138 irreducible representations

dim11111111
type++
imageC1C2C3C6C23C46C69C138
kernelC138C69C46C23C6C3C2C1
# reps112222224444

Matrix representation of C138 in GL1(𝔽139) generated by

61
G:=sub<GL(1,GF(139))| [61] >;

C138 in GAP, Magma, Sage, TeX

C_{138}
% in TeX

G:=Group("C138");
// GroupNames label

G:=SmallGroup(138,4);
// by ID

G=gap.SmallGroup(138,4);
# by ID

G:=PCGroup([3,-2,-3,-23]);
// Polycyclic

G:=Group<a|a^138=1>;
// generators/relations

Export

Subgroup lattice of C138 in TeX

׿
×
𝔽