Extensions 1→N→G→Q→1 with N=C2xC36 and Q=C2

Direct product G=NxQ with N=C2xC36 and Q=C2
dρLabelID
C22xC36144C2^2xC36144,47

Semidirect products G=N:Q with N=C2xC36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC36):1C2 = D18:C4φ: C2/C1C2 ⊆ Aut C2xC3672(C2xC36):1C2144,14
(C2xC36):2C2 = C9xC22:C4φ: C2/C1C2 ⊆ Aut C2xC3672(C2xC36):2C2144,21
(C2xC36):3C2 = C2xD36φ: C2/C1C2 ⊆ Aut C2xC3672(C2xC36):3C2144,39
(C2xC36):4C2 = D36:5C2φ: C2/C1C2 ⊆ Aut C2xC36722(C2xC36):4C2144,40
(C2xC36):5C2 = C2xC4xD9φ: C2/C1C2 ⊆ Aut C2xC3672(C2xC36):5C2144,38
(C2xC36):6C2 = D4xC18φ: C2/C1C2 ⊆ Aut C2xC3672(C2xC36):6C2144,48
(C2xC36):7C2 = C9xC4oD4φ: C2/C1C2 ⊆ Aut C2xC36722(C2xC36):7C2144,50

Non-split extensions G=N.Q with N=C2xC36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC36).1C2 = Dic9:C4φ: C2/C1C2 ⊆ Aut C2xC36144(C2xC36).1C2144,12
(C2xC36).2C2 = C4:Dic9φ: C2/C1C2 ⊆ Aut C2xC36144(C2xC36).2C2144,13
(C2xC36).3C2 = C2xDic18φ: C2/C1C2 ⊆ Aut C2xC36144(C2xC36).3C2144,37
(C2xC36).4C2 = C4.Dic9φ: C2/C1C2 ⊆ Aut C2xC36722(C2xC36).4C2144,10
(C2xC36).5C2 = C2xC9:C8φ: C2/C1C2 ⊆ Aut C2xC36144(C2xC36).5C2144,9
(C2xC36).6C2 = C4xDic9φ: C2/C1C2 ⊆ Aut C2xC36144(C2xC36).6C2144,11
(C2xC36).7C2 = C9xC4:C4φ: C2/C1C2 ⊆ Aut C2xC36144(C2xC36).7C2144,22
(C2xC36).8C2 = C9xM4(2)φ: C2/C1C2 ⊆ Aut C2xC36722(C2xC36).8C2144,24
(C2xC36).9C2 = Q8xC18φ: C2/C1C2 ⊆ Aut C2xC36144(C2xC36).9C2144,49

׿
x
:
Z
F
o
wr
Q
<