metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D36⋊5C2, C4.16D18, C12.45D6, Dic18⋊5C2, C18.4C23, C22.2D18, C36.16C22, D18.1C22, Dic9.2C22, (C2×C4)⋊3D9, (C2×C36)⋊4C2, (C4×D9)⋊4C2, C9⋊1(C4○D4), C9⋊D4⋊3C2, C3.(C4○D12), (C2×C6).27D6, (C2×C12).11S3, C2.5(C22×D9), C6.22(C22×S3), (C2×C18).11C22, SmallGroup(144,40)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D36⋊5C2
G = < a,b,c | a36=b2=c2=1, bab=a-1, ac=ca, cbc=a18b >
Subgroups: 219 in 60 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C9, Dic3, C12, D6, C2×C6, C4○D4, D9, C18, C18, Dic6, C4×S3, D12, C3⋊D4, C2×C12, Dic9, C36, D18, C2×C18, C4○D12, Dic18, C4×D9, D36, C9⋊D4, C2×C36, D36⋊5C2
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, D18, C4○D12, C22×D9, D36⋊5C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(28 36)(29 35)(30 34)(31 33)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 71)(11 72)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(29 54)(30 55)(31 56)(32 57)(33 58)(34 59)(35 60)(36 61)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(28,36),(29,35),(30,34),(31,33),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67)], [(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,71),(11,72),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(29,54),(30,55),(31,56),(32,57),(33,58),(34,59),(35,60),(36,61)]])
D36⋊5C2 is a maximal subgroup of
C42⋊4D9 Dic18⋊C4 D36.2C4 D72⋊7C2 D36.C4 C8⋊D18 C8.D18 D36⋊6C22 C36.C23 D4.9D18 D4⋊6D18 Q8.15D18 C4○D4×D9 D4⋊8D18 D4.10D18 D108⋊5C2 D6.D18 D36⋊5S3 Dic9.D6 D18.3D6 D36⋊6C6 C36.70D6
D36⋊5C2 is a maximal quotient of
C4×Dic18 C36.6Q8 C42⋊2D9 C4×D36 C42⋊7D9 C42⋊3D9 C23.8D18 C23.9D18 D18⋊D4 Dic9.D4 Dic9.Q8 D18.D4 D18⋊Q8 C4⋊C4⋊D9 C36.49D4 C23.26D18 C4×C9⋊D4 C23.28D18 C36⋊7D4 D108⋊5C2 D6.D18 D36⋊5S3 Dic9.D6 D18.3D6 C36.70D6
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 18A | ··· | 18I | 36A | ··· | 36L |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 2 | 18 | 18 | 2 | 1 | 1 | 2 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | C4○D4 | D9 | D18 | D18 | C4○D12 | D36⋊5C2 |
kernel | D36⋊5C2 | Dic18 | C4×D9 | D36 | C9⋊D4 | C2×C36 | C2×C12 | C12 | C2×C6 | C9 | C2×C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 6 | 3 | 4 | 12 |
Matrix representation of D36⋊5C2 ►in GL2(𝔽37) generated by
12 | 8 |
29 | 4 |
17 | 6 |
26 | 20 |
7 | 14 |
23 | 30 |
G:=sub<GL(2,GF(37))| [12,29,8,4],[17,26,6,20],[7,23,14,30] >;
D36⋊5C2 in GAP, Magma, Sage, TeX
D_{36}\rtimes_5C_2
% in TeX
G:=Group("D36:5C2");
// GroupNames label
G:=SmallGroup(144,40);
// by ID
G=gap.SmallGroup(144,40);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,2404,208,3461]);
// Polycyclic
G:=Group<a,b,c|a^36=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^18*b>;
// generators/relations