Copied to
clipboard

G = Dic9⋊C4order 144 = 24·32

The semidirect product of Dic9 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic9⋊C4, C18.5D4, C18.1Q8, C6.3Dic6, C2.1Dic18, C22.4D18, C91(C4⋊C4), C6.8(C4×S3), (C2×C4).1D9, C2.4(C4×D9), C18.4(C2×C4), (C2×C36).1C2, (C2×C12).1S3, (C2×C6).20D6, C2.1(C9⋊D4), C3.(Dic3⋊C4), C6.12(C3⋊D4), (C2×C18).4C22, (C2×Dic9).1C2, SmallGroup(144,12)

Series: Derived Chief Lower central Upper central

C1C18 — Dic9⋊C4
C1C3C9C18C2×C18C2×Dic9 — Dic9⋊C4
C9C18 — Dic9⋊C4
C1C22C2×C4

Generators and relations for Dic9⋊C4
 G = < a,b,c | a18=c4=1, b2=a9, bab-1=a-1, ac=ca, cbc-1=a9b >

2C4
9C4
9C4
18C4
9C2×C4
9C2×C4
2C12
3Dic3
3Dic3
6Dic3
9C4⋊C4
3C2×Dic3
3C2×Dic3
2C36
2Dic9
3Dic3⋊C4

Smallest permutation representation of Dic9⋊C4
Regular action on 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 74 10 83)(2 73 11 82)(3 90 12 81)(4 89 13 80)(5 88 14 79)(6 87 15 78)(7 86 16 77)(8 85 17 76)(9 84 18 75)(19 103 28 94)(20 102 29 93)(21 101 30 92)(22 100 31 91)(23 99 32 108)(24 98 33 107)(25 97 34 106)(26 96 35 105)(27 95 36 104)(37 125 46 116)(38 124 47 115)(39 123 48 114)(40 122 49 113)(41 121 50 112)(42 120 51 111)(43 119 52 110)(44 118 53 109)(45 117 54 126)(55 144 64 135)(56 143 65 134)(57 142 66 133)(58 141 67 132)(59 140 68 131)(60 139 69 130)(61 138 70 129)(62 137 71 128)(63 136 72 127)
(1 63 35 44)(2 64 36 45)(3 65 19 46)(4 66 20 47)(5 67 21 48)(6 68 22 49)(7 69 23 50)(8 70 24 51)(9 71 25 52)(10 72 26 53)(11 55 27 54)(12 56 28 37)(13 57 29 38)(14 58 30 39)(15 59 31 40)(16 60 32 41)(17 61 33 42)(18 62 34 43)(73 144 104 126)(74 127 105 109)(75 128 106 110)(76 129 107 111)(77 130 108 112)(78 131 91 113)(79 132 92 114)(80 133 93 115)(81 134 94 116)(82 135 95 117)(83 136 96 118)(84 137 97 119)(85 138 98 120)(86 139 99 121)(87 140 100 122)(88 141 101 123)(89 142 102 124)(90 143 103 125)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,74,10,83)(2,73,11,82)(3,90,12,81)(4,89,13,80)(5,88,14,79)(6,87,15,78)(7,86,16,77)(8,85,17,76)(9,84,18,75)(19,103,28,94)(20,102,29,93)(21,101,30,92)(22,100,31,91)(23,99,32,108)(24,98,33,107)(25,97,34,106)(26,96,35,105)(27,95,36,104)(37,125,46,116)(38,124,47,115)(39,123,48,114)(40,122,49,113)(41,121,50,112)(42,120,51,111)(43,119,52,110)(44,118,53,109)(45,117,54,126)(55,144,64,135)(56,143,65,134)(57,142,66,133)(58,141,67,132)(59,140,68,131)(60,139,69,130)(61,138,70,129)(62,137,71,128)(63,136,72,127), (1,63,35,44)(2,64,36,45)(3,65,19,46)(4,66,20,47)(5,67,21,48)(6,68,22,49)(7,69,23,50)(8,70,24,51)(9,71,25,52)(10,72,26,53)(11,55,27,54)(12,56,28,37)(13,57,29,38)(14,58,30,39)(15,59,31,40)(16,60,32,41)(17,61,33,42)(18,62,34,43)(73,144,104,126)(74,127,105,109)(75,128,106,110)(76,129,107,111)(77,130,108,112)(78,131,91,113)(79,132,92,114)(80,133,93,115)(81,134,94,116)(82,135,95,117)(83,136,96,118)(84,137,97,119)(85,138,98,120)(86,139,99,121)(87,140,100,122)(88,141,101,123)(89,142,102,124)(90,143,103,125)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,74,10,83)(2,73,11,82)(3,90,12,81)(4,89,13,80)(5,88,14,79)(6,87,15,78)(7,86,16,77)(8,85,17,76)(9,84,18,75)(19,103,28,94)(20,102,29,93)(21,101,30,92)(22,100,31,91)(23,99,32,108)(24,98,33,107)(25,97,34,106)(26,96,35,105)(27,95,36,104)(37,125,46,116)(38,124,47,115)(39,123,48,114)(40,122,49,113)(41,121,50,112)(42,120,51,111)(43,119,52,110)(44,118,53,109)(45,117,54,126)(55,144,64,135)(56,143,65,134)(57,142,66,133)(58,141,67,132)(59,140,68,131)(60,139,69,130)(61,138,70,129)(62,137,71,128)(63,136,72,127), (1,63,35,44)(2,64,36,45)(3,65,19,46)(4,66,20,47)(5,67,21,48)(6,68,22,49)(7,69,23,50)(8,70,24,51)(9,71,25,52)(10,72,26,53)(11,55,27,54)(12,56,28,37)(13,57,29,38)(14,58,30,39)(15,59,31,40)(16,60,32,41)(17,61,33,42)(18,62,34,43)(73,144,104,126)(74,127,105,109)(75,128,106,110)(76,129,107,111)(77,130,108,112)(78,131,91,113)(79,132,92,114)(80,133,93,115)(81,134,94,116)(82,135,95,117)(83,136,96,118)(84,137,97,119)(85,138,98,120)(86,139,99,121)(87,140,100,122)(88,141,101,123)(89,142,102,124)(90,143,103,125) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,74,10,83),(2,73,11,82),(3,90,12,81),(4,89,13,80),(5,88,14,79),(6,87,15,78),(7,86,16,77),(8,85,17,76),(9,84,18,75),(19,103,28,94),(20,102,29,93),(21,101,30,92),(22,100,31,91),(23,99,32,108),(24,98,33,107),(25,97,34,106),(26,96,35,105),(27,95,36,104),(37,125,46,116),(38,124,47,115),(39,123,48,114),(40,122,49,113),(41,121,50,112),(42,120,51,111),(43,119,52,110),(44,118,53,109),(45,117,54,126),(55,144,64,135),(56,143,65,134),(57,142,66,133),(58,141,67,132),(59,140,68,131),(60,139,69,130),(61,138,70,129),(62,137,71,128),(63,136,72,127)], [(1,63,35,44),(2,64,36,45),(3,65,19,46),(4,66,20,47),(5,67,21,48),(6,68,22,49),(7,69,23,50),(8,70,24,51),(9,71,25,52),(10,72,26,53),(11,55,27,54),(12,56,28,37),(13,57,29,38),(14,58,30,39),(15,59,31,40),(16,60,32,41),(17,61,33,42),(18,62,34,43),(73,144,104,126),(74,127,105,109),(75,128,106,110),(76,129,107,111),(77,130,108,112),(78,131,91,113),(79,132,92,114),(80,133,93,115),(81,134,94,116),(82,135,95,117),(83,136,96,118),(84,137,97,119),(85,138,98,120),(86,139,99,121),(87,140,100,122),(88,141,101,123),(89,142,102,124),(90,143,103,125)]])

Dic9⋊C4 is a maximal subgroup of
C4×Dic18  C36.6Q8  C422D9  C423D9  C23.16D18  C222Dic18  C23.8D18  Dic94D4  C23.9D18  D18⋊D4  Dic93Q8  C36⋊Q8  Dic9.Q8  C36.3Q8  C4⋊C4×D9  D18.D4  D18⋊Q8  C4⋊C4⋊D9  C36.49D4  C4×C9⋊D4  C23.28D18  C23.23D18  Dic9⋊D4  Dic9⋊Q8  D183Q8  Dic27⋊C4  Dic9⋊Dic3  C18.Dic6  Dic9⋊C12  C6.Dic18
Dic9⋊C4 is a maximal quotient of
C36.Q8  C4.Dic18  Dic9⋊C8  C36.53D4  C18.C42  Dic27⋊C4  Dic9⋊Dic3  C18.Dic6  C6.Dic18

42 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F6A6B6C9A9B9C12A12B12C12D18A···18I36A···36L
order122234444446669991212121218···1836···36
size11112221818181822222222222···22···2

42 irreducible representations

dim1111222222222222
type+++++-++-+-
imageC1C2C2C4S3D4Q8D6D9Dic6C4×S3C3⋊D4D18Dic18C4×D9C9⋊D4
kernelDic9⋊C4C2×Dic9C2×C36Dic9C2×C12C18C18C2×C6C2×C4C6C6C6C22C2C2C2
# reps1214111132223666

Matrix representation of Dic9⋊C4 in GL4(𝔽37) generated by

26000
241000
001131
00617
,
14300
92300
00730
002330
,
6000
0600
003227
00105
G:=sub<GL(4,GF(37))| [26,24,0,0,0,10,0,0,0,0,11,6,0,0,31,17],[14,9,0,0,3,23,0,0,0,0,7,23,0,0,30,30],[6,0,0,0,0,6,0,0,0,0,32,10,0,0,27,5] >;

Dic9⋊C4 in GAP, Magma, Sage, TeX

{\rm Dic}_9\rtimes C_4
% in TeX

G:=Group("Dic9:C4");
// GroupNames label

G:=SmallGroup(144,12);
// by ID

G=gap.SmallGroup(144,12);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,121,31,2404,208,3461]);
// Polycyclic

G:=Group<a,b,c|a^18=c^4=1,b^2=a^9,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^9*b>;
// generators/relations

Export

Subgroup lattice of Dic9⋊C4 in TeX

׿
×
𝔽