Copied to
clipboard

G = C4⋊Dic9order 144 = 24·32

The semidirect product of C4 and Dic9 acting via Dic9/C18=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊Dic9, C361C4, C2.1D36, C6.4D12, C18.4D4, C18.2Q8, C6.4Dic6, C2.2Dic18, C12.2Dic3, C22.5D18, C92(C4⋊C4), (C2×C4).3D9, (C2×C12).5S3, C18.8(C2×C4), (C2×C36).2C2, (C2×C6).21D6, C3.(C4⋊Dic3), C2.4(C2×Dic9), C6.9(C2×Dic3), (C2×C18).5C22, (C2×Dic9).2C2, SmallGroup(144,13)

Series: Derived Chief Lower central Upper central

C1C18 — C4⋊Dic9
C1C3C9C18C2×C18C2×Dic9 — C4⋊Dic9
C9C18 — C4⋊Dic9
C1C22C2×C4

Generators and relations for C4⋊Dic9
 G = < a,b,c | a4=b18=1, c2=b9, ab=ba, cac-1=a-1, cbc-1=b-1 >

18C4
18C4
9C2×C4
9C2×C4
6Dic3
6Dic3
9C4⋊C4
3C2×Dic3
3C2×Dic3
2Dic9
2Dic9
3C4⋊Dic3

Smallest permutation representation of C4⋊Dic9
Regular action on 144 points
Generators in S144
(1 106 35 127)(2 107 36 128)(3 108 19 129)(4 91 20 130)(5 92 21 131)(6 93 22 132)(7 94 23 133)(8 95 24 134)(9 96 25 135)(10 97 26 136)(11 98 27 137)(12 99 28 138)(13 100 29 139)(14 101 30 140)(15 102 31 141)(16 103 32 142)(17 104 33 143)(18 105 34 144)(37 67 117 82)(38 68 118 83)(39 69 119 84)(40 70 120 85)(41 71 121 86)(42 72 122 87)(43 55 123 88)(44 56 124 89)(45 57 125 90)(46 58 126 73)(47 59 109 74)(48 60 110 75)(49 61 111 76)(50 62 112 77)(51 63 113 78)(52 64 114 79)(53 65 115 80)(54 66 116 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 82 10 73)(2 81 11 90)(3 80 12 89)(4 79 13 88)(5 78 14 87)(6 77 15 86)(7 76 16 85)(8 75 17 84)(9 74 18 83)(19 65 28 56)(20 64 29 55)(21 63 30 72)(22 62 31 71)(23 61 32 70)(24 60 33 69)(25 59 34 68)(26 58 35 67)(27 57 36 66)(37 136 46 127)(38 135 47 144)(39 134 48 143)(40 133 49 142)(41 132 50 141)(42 131 51 140)(43 130 52 139)(44 129 53 138)(45 128 54 137)(91 114 100 123)(92 113 101 122)(93 112 102 121)(94 111 103 120)(95 110 104 119)(96 109 105 118)(97 126 106 117)(98 125 107 116)(99 124 108 115)

G:=sub<Sym(144)| (1,106,35,127)(2,107,36,128)(3,108,19,129)(4,91,20,130)(5,92,21,131)(6,93,22,132)(7,94,23,133)(8,95,24,134)(9,96,25,135)(10,97,26,136)(11,98,27,137)(12,99,28,138)(13,100,29,139)(14,101,30,140)(15,102,31,141)(16,103,32,142)(17,104,33,143)(18,105,34,144)(37,67,117,82)(38,68,118,83)(39,69,119,84)(40,70,120,85)(41,71,121,86)(42,72,122,87)(43,55,123,88)(44,56,124,89)(45,57,125,90)(46,58,126,73)(47,59,109,74)(48,60,110,75)(49,61,111,76)(50,62,112,77)(51,63,113,78)(52,64,114,79)(53,65,115,80)(54,66,116,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,82,10,73)(2,81,11,90)(3,80,12,89)(4,79,13,88)(5,78,14,87)(6,77,15,86)(7,76,16,85)(8,75,17,84)(9,74,18,83)(19,65,28,56)(20,64,29,55)(21,63,30,72)(22,62,31,71)(23,61,32,70)(24,60,33,69)(25,59,34,68)(26,58,35,67)(27,57,36,66)(37,136,46,127)(38,135,47,144)(39,134,48,143)(40,133,49,142)(41,132,50,141)(42,131,51,140)(43,130,52,139)(44,129,53,138)(45,128,54,137)(91,114,100,123)(92,113,101,122)(93,112,102,121)(94,111,103,120)(95,110,104,119)(96,109,105,118)(97,126,106,117)(98,125,107,116)(99,124,108,115)>;

G:=Group( (1,106,35,127)(2,107,36,128)(3,108,19,129)(4,91,20,130)(5,92,21,131)(6,93,22,132)(7,94,23,133)(8,95,24,134)(9,96,25,135)(10,97,26,136)(11,98,27,137)(12,99,28,138)(13,100,29,139)(14,101,30,140)(15,102,31,141)(16,103,32,142)(17,104,33,143)(18,105,34,144)(37,67,117,82)(38,68,118,83)(39,69,119,84)(40,70,120,85)(41,71,121,86)(42,72,122,87)(43,55,123,88)(44,56,124,89)(45,57,125,90)(46,58,126,73)(47,59,109,74)(48,60,110,75)(49,61,111,76)(50,62,112,77)(51,63,113,78)(52,64,114,79)(53,65,115,80)(54,66,116,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,82,10,73)(2,81,11,90)(3,80,12,89)(4,79,13,88)(5,78,14,87)(6,77,15,86)(7,76,16,85)(8,75,17,84)(9,74,18,83)(19,65,28,56)(20,64,29,55)(21,63,30,72)(22,62,31,71)(23,61,32,70)(24,60,33,69)(25,59,34,68)(26,58,35,67)(27,57,36,66)(37,136,46,127)(38,135,47,144)(39,134,48,143)(40,133,49,142)(41,132,50,141)(42,131,51,140)(43,130,52,139)(44,129,53,138)(45,128,54,137)(91,114,100,123)(92,113,101,122)(93,112,102,121)(94,111,103,120)(95,110,104,119)(96,109,105,118)(97,126,106,117)(98,125,107,116)(99,124,108,115) );

G=PermutationGroup([[(1,106,35,127),(2,107,36,128),(3,108,19,129),(4,91,20,130),(5,92,21,131),(6,93,22,132),(7,94,23,133),(8,95,24,134),(9,96,25,135),(10,97,26,136),(11,98,27,137),(12,99,28,138),(13,100,29,139),(14,101,30,140),(15,102,31,141),(16,103,32,142),(17,104,33,143),(18,105,34,144),(37,67,117,82),(38,68,118,83),(39,69,119,84),(40,70,120,85),(41,71,121,86),(42,72,122,87),(43,55,123,88),(44,56,124,89),(45,57,125,90),(46,58,126,73),(47,59,109,74),(48,60,110,75),(49,61,111,76),(50,62,112,77),(51,63,113,78),(52,64,114,79),(53,65,115,80),(54,66,116,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,82,10,73),(2,81,11,90),(3,80,12,89),(4,79,13,88),(5,78,14,87),(6,77,15,86),(7,76,16,85),(8,75,17,84),(9,74,18,83),(19,65,28,56),(20,64,29,55),(21,63,30,72),(22,62,31,71),(23,61,32,70),(24,60,33,69),(25,59,34,68),(26,58,35,67),(27,57,36,66),(37,136,46,127),(38,135,47,144),(39,134,48,143),(40,133,49,142),(41,132,50,141),(42,131,51,140),(43,130,52,139),(44,129,53,138),(45,128,54,137),(91,114,100,123),(92,113,101,122),(93,112,102,121),(94,111,103,120),(95,110,104,119),(96,109,105,118),(97,126,106,117),(98,125,107,116),(99,124,108,115)]])

C4⋊Dic9 is a maximal subgroup of
C36.Q8  C4.Dic18  C36.45D4  C8⋊Dic9  C721C4  C2.D72  D4⋊Dic9  Q82Dic9  C4×Dic18  C362Q8  C36.6Q8  C4×D36  C222Dic18  C23.8D18  C23.9D18  C22.4D36  C36⋊Q8  Dic9.Q8  C36.3Q8  C4⋊C4×D9  C4⋊C47D9  D182Q8  C4⋊C4⋊D9  C36.49D4  C23.26D18  C367D4  D4×Dic9  C362D4  Q8×Dic9  D183Q8  C4⋊Dic27  Dic3⋊Dic9  C36⋊C12  C36⋊Dic3
C4⋊Dic9 is a maximal quotient of
C36⋊C8  C72.C4  C8⋊Dic9  C721C4  C18.C42  C4⋊Dic27  Dic3⋊Dic9  C36⋊Dic3

42 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F6A6B6C9A9B9C12A12B12C12D18A···18I36A···36L
order122234444446669991212121218···1836···36
size11112221818181822222222222···22···2

42 irreducible representations

dim1111222222222222
type+++++--++-+-+-+
imageC1C2C2C4S3D4Q8Dic3D6D9Dic6D12Dic9D18Dic18D36
kernelC4⋊Dic9C2×Dic9C2×C36C36C2×C12C18C18C12C2×C6C2×C4C6C6C4C22C2C2
# reps1214111213226366

Matrix representation of C4⋊Dic9 in GL3(𝔽37) generated by

100
0310
006
,
3600
0330
009
,
3100
001
010
G:=sub<GL(3,GF(37))| [1,0,0,0,31,0,0,0,6],[36,0,0,0,33,0,0,0,9],[31,0,0,0,0,1,0,1,0] >;

C4⋊Dic9 in GAP, Magma, Sage, TeX

C_4\rtimes {\rm Dic}_9
% in TeX

G:=Group("C4:Dic9");
// GroupNames label

G:=SmallGroup(144,13);
// by ID

G=gap.SmallGroup(144,13);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,24,121,55,2404,208,3461]);
// Polycyclic

G:=Group<a,b,c|a^4=b^18=1,c^2=b^9,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C4⋊Dic9 in TeX

׿
×
𝔽