Extensions 1→N→G→Q→1 with N=C3×D4 and Q=S3

Direct product G=N×Q with N=C3×D4 and Q=S3
dρLabelID
C3×S3×D4244C3xS3xD4144,162

Semidirect products G=N:Q with N=C3×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1S3 = C327D8φ: S3/C3C2 ⊆ Out C3×D472(C3xD4):1S3144,96
(C3×D4)⋊2S3 = D4×C3⋊S3φ: S3/C3C2 ⊆ Out C3×D436(C3xD4):2S3144,172
(C3×D4)⋊3S3 = C12.D6φ: S3/C3C2 ⊆ Out C3×D472(C3xD4):3S3144,173
(C3×D4)⋊4S3 = C3×D4⋊S3φ: S3/C3C2 ⊆ Out C3×D4244(C3xD4):4S3144,80
(C3×D4)⋊5S3 = C3×D42S3φ: trivial image244(C3xD4):5S3144,163

Non-split extensions G=N.Q with N=C3×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×D4).1S3 = D4.D9φ: S3/C3C2 ⊆ Out C3×D4724-(C3xD4).1S3144,15
(C3×D4).2S3 = D4⋊D9φ: S3/C3C2 ⊆ Out C3×D4724+(C3xD4).2S3144,16
(C3×D4).3S3 = D4×D9φ: S3/C3C2 ⊆ Out C3×D4364+(C3xD4).3S3144,41
(C3×D4).4S3 = D42D9φ: S3/C3C2 ⊆ Out C3×D4724-(C3xD4).4S3144,42
(C3×D4).5S3 = C329SD16φ: S3/C3C2 ⊆ Out C3×D472(C3xD4).5S3144,97
(C3×D4).6S3 = C3×D4.S3φ: S3/C3C2 ⊆ Out C3×D4244(C3xD4).6S3144,81

׿
×
𝔽