Extensions 1→N→G→Q→1 with N=C6 and Q=C2×A4

Direct product G=N×Q with N=C6 and Q=C2×A4

Semidirect products G=N:Q with N=C6 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×A4) = C2×S3×A4φ: C2×A4/A4C2 ⊆ Aut C6186+C6:(C2xA4)144,190

Non-split extensions G=N.Q with N=C6 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C6.1(C2×A4) = Dic3.A4φ: C2×A4/A4C2 ⊆ Aut C6484+C6.1(C2xA4)144,127
C6.2(C2×A4) = S3×SL2(𝔽3)φ: C2×A4/A4C2 ⊆ Aut C6244-C6.2(C2xA4)144,128
C6.3(C2×A4) = Dic3×A4φ: C2×A4/A4C2 ⊆ Aut C6366-C6.3(C2xA4)144,129
C6.4(C2×A4) = C4×C3.A4central extension (φ=1)363C6.4(C2xA4)144,34
C6.5(C2×A4) = C2×Q8⋊C9central extension (φ=1)144C6.5(C2xA4)144,35
C6.6(C2×A4) = Q8.C18central extension (φ=1)722C6.6(C2xA4)144,36
C6.7(C2×A4) = C22×C3.A4central extension (φ=1)36C6.7(C2xA4)144,110
C6.8(C2×A4) = C12×A4central extension (φ=1)363C6.8(C2xA4)144,155
C6.9(C2×A4) = C6×SL2(𝔽3)central extension (φ=1)48C6.9(C2xA4)144,156
C6.10(C2×A4) = C3×C4.A4central extension (φ=1)482C6.10(C2xA4)144,157