Aliases: Dic3.A4, SL2(𝔽3)⋊2S3, C3⋊(C4.A4), (C3×Q8).C6, C2.2(S3×A4), C6.1(C2×A4), Q8⋊3S3⋊C3, Q8.2(C3×S3), (C3×SL2(𝔽3))⋊2C2, SmallGroup(144,127)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C6 — C3×Q8 — C3×SL2(𝔽3) — Dic3.A4 |
C3×Q8 — Dic3.A4 |
Generators and relations for Dic3.A4
G = < a,b,c,d,e | a6=e3=1, b2=c2=d2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a3c, ece-1=a3cd, ede-1=c >
Character table of Dic3.A4
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 18 | 2 | 4 | 4 | 8 | 8 | 3 | 3 | 6 | 2 | 4 | 4 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 2 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ9 | 2 | 2 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 2 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ10 | 2 | -2 | 0 | 2 | -1 | -1 | -1 | -1 | -2i | 2i | 0 | -2 | 1 | 1 | 1 | 1 | 0 | -i | i | -i | i | complex lifted from C4.A4 |
ρ11 | 2 | -2 | 0 | 2 | -1 | -1 | -1 | -1 | 2i | -2i | 0 | -2 | 1 | 1 | 1 | 1 | 0 | i | -i | i | -i | complex lifted from C4.A4 |
ρ12 | 2 | -2 | 0 | 2 | ζ65 | ζ6 | ζ65 | ζ6 | 2i | -2i | 0 | -2 | ζ3 | ζ32 | ζ3 | ζ32 | 0 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | complex lifted from C4.A4 |
ρ13 | 2 | -2 | 0 | 2 | ζ6 | ζ65 | ζ6 | ζ65 | -2i | 2i | 0 | -2 | ζ32 | ζ3 | ζ32 | ζ3 | 0 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | complex lifted from C4.A4 |
ρ14 | 2 | -2 | 0 | 2 | ζ6 | ζ65 | ζ6 | ζ65 | 2i | -2i | 0 | -2 | ζ32 | ζ3 | ζ32 | ζ3 | 0 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | complex lifted from C4.A4 |
ρ15 | 2 | -2 | 0 | 2 | ζ65 | ζ6 | ζ65 | ζ6 | -2i | 2i | 0 | -2 | ζ3 | ζ32 | ζ3 | ζ32 | 0 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | complex lifted from C4.A4 |
ρ16 | 3 | 3 | -1 | 3 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | 3 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ17 | 3 | 3 | 1 | 3 | 0 | 0 | 0 | 0 | -3 | -3 | -1 | 3 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ18 | 4 | -4 | 0 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful, Schur index 2 |
ρ19 | 4 | -4 | 0 | -2 | 1-√-3 | 1+√-3 | ζ3 | ζ32 | 0 | 0 | 0 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 4 | -4 | 0 | -2 | 1+√-3 | 1-√-3 | ζ32 | ζ3 | 0 | 0 | 0 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×A4 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 28 4 25)(2 27 5 30)(3 26 6 29)(7 32 10 35)(8 31 11 34)(9 36 12 33)(13 38 16 41)(14 37 17 40)(15 42 18 39)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 8 4 11)(2 9 5 12)(3 10 6 7)(13 19 16 22)(14 20 17 23)(15 21 18 24)(25 34 28 31)(26 35 29 32)(27 36 30 33)(37 43 40 46)(38 44 41 47)(39 45 42 48)
(1 14 4 17)(2 15 5 18)(3 16 6 13)(7 22 10 19)(8 23 11 20)(9 24 12 21)(25 40 28 37)(26 41 29 38)(27 42 30 39)(31 46 34 43)(32 47 35 44)(33 48 36 45)
(1 3 5)(2 4 6)(7 15 23)(8 16 24)(9 17 19)(10 18 20)(11 13 21)(12 14 22)(25 29 27)(26 30 28)(31 41 45)(32 42 46)(33 37 47)(34 38 48)(35 39 43)(36 40 44)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,4,25)(2,27,5,30)(3,26,6,29)(7,32,10,35)(8,31,11,34)(9,36,12,33)(13,38,16,41)(14,37,17,40)(15,42,18,39)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,8,4,11)(2,9,5,12)(3,10,6,7)(13,19,16,22)(14,20,17,23)(15,21,18,24)(25,34,28,31)(26,35,29,32)(27,36,30,33)(37,43,40,46)(38,44,41,47)(39,45,42,48), (1,14,4,17)(2,15,5,18)(3,16,6,13)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,3,5)(2,4,6)(7,15,23)(8,16,24)(9,17,19)(10,18,20)(11,13,21)(12,14,22)(25,29,27)(26,30,28)(31,41,45)(32,42,46)(33,37,47)(34,38,48)(35,39,43)(36,40,44)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,4,25)(2,27,5,30)(3,26,6,29)(7,32,10,35)(8,31,11,34)(9,36,12,33)(13,38,16,41)(14,37,17,40)(15,42,18,39)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,8,4,11)(2,9,5,12)(3,10,6,7)(13,19,16,22)(14,20,17,23)(15,21,18,24)(25,34,28,31)(26,35,29,32)(27,36,30,33)(37,43,40,46)(38,44,41,47)(39,45,42,48), (1,14,4,17)(2,15,5,18)(3,16,6,13)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,3,5)(2,4,6)(7,15,23)(8,16,24)(9,17,19)(10,18,20)(11,13,21)(12,14,22)(25,29,27)(26,30,28)(31,41,45)(32,42,46)(33,37,47)(34,38,48)(35,39,43)(36,40,44) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,28,4,25),(2,27,5,30),(3,26,6,29),(7,32,10,35),(8,31,11,34),(9,36,12,33),(13,38,16,41),(14,37,17,40),(15,42,18,39),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,8,4,11),(2,9,5,12),(3,10,6,7),(13,19,16,22),(14,20,17,23),(15,21,18,24),(25,34,28,31),(26,35,29,32),(27,36,30,33),(37,43,40,46),(38,44,41,47),(39,45,42,48)], [(1,14,4,17),(2,15,5,18),(3,16,6,13),(7,22,10,19),(8,23,11,20),(9,24,12,21),(25,40,28,37),(26,41,29,38),(27,42,30,39),(31,46,34,43),(32,47,35,44),(33,48,36,45)], [(1,3,5),(2,4,6),(7,15,23),(8,16,24),(9,17,19),(10,18,20),(11,13,21),(12,14,22),(25,29,27),(26,30,28),(31,41,45),(32,42,46),(33,37,47),(34,38,48),(35,39,43),(36,40,44)]])
Dic3.A4 is a maximal subgroup of
CSU2(𝔽3)⋊S3 Dic3.4S4 Dic3.5S4 GL2(𝔽3)⋊S3 SL2(𝔽3).11D6 Dic6.A4 S3×C4.A4 Dic9.A4 Dic9.2A4 C6.(S3×A4) C3⋊Dic3.2A4
Dic3.A4 is a maximal quotient of
Dic3×SL2(𝔽3) Dic9.A4 Dic9.2A4 Q8⋊C9⋊3S3 C6.(S3×A4) C3⋊Dic3.2A4
Matrix representation of Dic3.A4 ►in GL4(𝔽5) generated by
0 | 2 | 2 | 1 |
4 | 1 | 4 | 3 |
4 | 2 | 0 | 2 |
3 | 1 | 4 | 1 |
0 | 1 | 3 | 0 |
0 | 0 | 4 | 1 |
3 | 0 | 2 | 3 |
3 | 4 | 2 | 3 |
2 | 4 | 3 | 1 |
1 | 0 | 4 | 2 |
2 | 2 | 2 | 3 |
0 | 1 | 2 | 1 |
4 | 4 | 4 | 4 |
1 | 2 | 4 | 4 |
1 | 1 | 0 | 3 |
0 | 3 | 2 | 4 |
4 | 0 | 1 | 4 |
0 | 4 | 2 | 0 |
0 | 2 | 0 | 0 |
1 | 2 | 0 | 0 |
G:=sub<GL(4,GF(5))| [0,4,4,3,2,1,2,1,2,4,0,4,1,3,2,1],[0,0,3,3,1,0,0,4,3,4,2,2,0,1,3,3],[2,1,2,0,4,0,2,1,3,4,2,2,1,2,3,1],[4,1,1,0,4,2,1,3,4,4,0,2,4,4,3,4],[4,0,0,1,0,4,2,2,1,2,0,0,4,0,0,0] >;
Dic3.A4 in GAP, Magma, Sage, TeX
{\rm Dic}_3.A_4
% in TeX
G:=Group("Dic3.A4");
// GroupNames label
G:=SmallGroup(144,127);
// by ID
G=gap.SmallGroup(144,127);
# by ID
G:=PCGroup([6,-2,-3,-2,2,-3,-2,432,170,230,81,351,165,1444]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=e^3=1,b^2=c^2=d^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^3*c,e*c*e^-1=a^3*c*d,e*d*e^-1=c>;
// generators/relations
Export
Subgroup lattice of Dic3.A4 in TeX
Character table of Dic3.A4 in TeX