Extensions 1→N→G→Q→1 with N=C2×Dic9 and Q=C2

Direct product G=N×Q with N=C2×Dic9 and Q=C2
dρLabelID
C22×Dic9144C2^2xDic9144,45

Semidirect products G=N:Q with N=C2×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic9)⋊1C2 = D18⋊C4φ: C2/C1C2 ⊆ Out C2×Dic972(C2xDic9):1C2144,14
(C2×Dic9)⋊2C2 = C18.D4φ: C2/C1C2 ⊆ Out C2×Dic972(C2xDic9):2C2144,19
(C2×Dic9)⋊3C2 = D42D9φ: C2/C1C2 ⊆ Out C2×Dic9724-(C2xDic9):3C2144,42
(C2×Dic9)⋊4C2 = C2×C9⋊D4φ: C2/C1C2 ⊆ Out C2×Dic972(C2xDic9):4C2144,46
(C2×Dic9)⋊5C2 = C2×C4×D9φ: trivial image72(C2xDic9):5C2144,38

Non-split extensions G=N.Q with N=C2×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic9).1C2 = Dic9⋊C4φ: C2/C1C2 ⊆ Out C2×Dic9144(C2xDic9).1C2144,12
(C2×Dic9).2C2 = C4⋊Dic9φ: C2/C1C2 ⊆ Out C2×Dic9144(C2xDic9).2C2144,13
(C2×Dic9).3C2 = C2×Dic18φ: C2/C1C2 ⊆ Out C2×Dic9144(C2xDic9).3C2144,37
(C2×Dic9).4C2 = C4×Dic9φ: trivial image144(C2xDic9).4C2144,11

׿
×
𝔽