direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×Dic9, C18⋊C4, C6.9D6, C22.D9, C2.2D18, C6.2Dic3, C18.4C22, C9⋊2(C2×C4), (C2×C18).C2, (C2×C6).2S3, C3.(C2×Dic3), SmallGroup(72,7)
Series: Derived ►Chief ►Lower central ►Upper central
C9 — C2×Dic9 |
Generators and relations for C2×Dic9
G = < a,b,c | a2=b18=1, c2=b9, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×Dic9
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 9A | 9B | 9C | 18A | 18B | 18C | 18D | 18E | 18F | 18G | 18H | 18I | |
size | 1 | 1 | 1 | 1 | 2 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | i | i | -i | -i | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D18 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ13 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ14 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D18 |
ρ15 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D18 |
ρ16 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ17 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | ζ95+ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | symplectic lifted from Dic9, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | ζ97+ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | symplectic lifted from Dic9, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | ζ98+ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | symplectic lifted from Dic9, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ95-ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | symplectic lifted from Dic9, Schur index 2 |
ρ23 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ98-ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | symplectic lifted from Dic9, Schur index 2 |
ρ24 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ97-ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | symplectic lifted from Dic9, Schur index 2 |
(1 33)(2 34)(3 35)(4 36)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(37 67)(38 68)(39 69)(40 70)(41 71)(42 72)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 40 10 49)(2 39 11 48)(3 38 12 47)(4 37 13 46)(5 54 14 45)(6 53 15 44)(7 52 16 43)(8 51 17 42)(9 50 18 41)(19 66 28 57)(20 65 29 56)(21 64 30 55)(22 63 31 72)(23 62 32 71)(24 61 33 70)(25 60 34 69)(26 59 35 68)(27 58 36 67)
G:=sub<Sym(72)| (1,33)(2,34)(3,35)(4,36)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,40,10,49)(2,39,11,48)(3,38,12,47)(4,37,13,46)(5,54,14,45)(6,53,15,44)(7,52,16,43)(8,51,17,42)(9,50,18,41)(19,66,28,57)(20,65,29,56)(21,64,30,55)(22,63,31,72)(23,62,32,71)(24,61,33,70)(25,60,34,69)(26,59,35,68)(27,58,36,67)>;
G:=Group( (1,33)(2,34)(3,35)(4,36)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,40,10,49)(2,39,11,48)(3,38,12,47)(4,37,13,46)(5,54,14,45)(6,53,15,44)(7,52,16,43)(8,51,17,42)(9,50,18,41)(19,66,28,57)(20,65,29,56)(21,64,30,55)(22,63,31,72)(23,62,32,71)(24,61,33,70)(25,60,34,69)(26,59,35,68)(27,58,36,67) );
G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(37,67),(38,68),(39,69),(40,70),(41,71),(42,72),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,40,10,49),(2,39,11,48),(3,38,12,47),(4,37,13,46),(5,54,14,45),(6,53,15,44),(7,52,16,43),(8,51,17,42),(9,50,18,41),(19,66,28,57),(20,65,29,56),(21,64,30,55),(22,63,31,72),(23,62,32,71),(24,61,33,70),(25,60,34,69),(26,59,35,68),(27,58,36,67)]])
C2×Dic9 is a maximal subgroup of
Dic9⋊C4 C4⋊Dic9 D18⋊C4 C18.D4 C2×C4×D9 D4⋊2D9 Q8⋊Dic9
C2×Dic9 is a maximal quotient of C4.Dic9 C4⋊Dic9 C18.D4
Matrix representation of C2×Dic9 ►in GL3(𝔽37) generated by
1 | 0 | 0 |
0 | 36 | 0 |
0 | 0 | 36 |
36 | 0 | 0 |
0 | 11 | 20 |
0 | 17 | 31 |
6 | 0 | 0 |
0 | 26 | 17 |
0 | 6 | 11 |
G:=sub<GL(3,GF(37))| [1,0,0,0,36,0,0,0,36],[36,0,0,0,11,17,0,20,31],[6,0,0,0,26,6,0,17,11] >;
C2×Dic9 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_9
% in TeX
G:=Group("C2xDic9");
// GroupNames label
G:=SmallGroup(72,7);
// by ID
G=gap.SmallGroup(72,7);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,20,803,138,1204]);
// Polycyclic
G:=Group<a,b,c|a^2=b^18=1,c^2=b^9,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×Dic9 in TeX
Character table of C2×Dic9 in TeX