Copied to
clipboard

G = C2×C4×C20order 160 = 25·5

Abelian group of type [2,4,20]

direct product, abelian, monomial, 2-elementary

Aliases: C2×C4×C20, SmallGroup(160,175)

Series: Derived Chief Lower central Upper central

C1 — C2×C4×C20
C1C2C22C2×C10C2×C20C4×C20 — C2×C4×C20
C1 — C2×C4×C20
C1 — C2×C4×C20

Generators and relations for C2×C4×C20
 G = < a,b,c | a2=b4=c20=1, ab=ba, ac=ca, bc=cb >

Subgroups: 108, all normal (8 characteristic)
C1, C2, C4, C22, C22, C5, C2×C4, C23, C10, C42, C22×C4, C20, C2×C10, C2×C10, C2×C42, C2×C20, C22×C10, C4×C20, C22×C20, C2×C4×C20
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, C42, C22×C4, C20, C2×C10, C2×C42, C2×C20, C22×C10, C4×C20, C22×C20, C2×C4×C20

Smallest permutation representation of C2×C4×C20
Regular action on 160 points
Generators in S160
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 101)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 121)(69 122)(70 123)(71 124)(72 125)(73 126)(74 127)(75 128)(76 129)(77 130)(78 131)(79 132)(80 133)(81 146)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 153)(89 154)(90 155)(91 156)(92 157)(93 158)(94 159)(95 160)(96 141)(97 142)(98 143)(99 144)(100 145)
(1 142 121 102)(2 143 122 103)(3 144 123 104)(4 145 124 105)(5 146 125 106)(6 147 126 107)(7 148 127 108)(8 149 128 109)(9 150 129 110)(10 151 130 111)(11 152 131 112)(12 153 132 113)(13 154 133 114)(14 155 134 115)(15 156 135 116)(16 157 136 117)(17 158 137 118)(18 159 138 119)(19 160 139 120)(20 141 140 101)(21 49 97 68)(22 50 98 69)(23 51 99 70)(24 52 100 71)(25 53 81 72)(26 54 82 73)(27 55 83 74)(28 56 84 75)(29 57 85 76)(30 58 86 77)(31 59 87 78)(32 60 88 79)(33 41 89 80)(34 42 90 61)(35 43 91 62)(36 44 92 63)(37 45 93 64)(38 46 94 65)(39 47 95 66)(40 48 96 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,101)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145), (1,142,121,102)(2,143,122,103)(3,144,123,104)(4,145,124,105)(5,146,125,106)(6,147,126,107)(7,148,127,108)(8,149,128,109)(9,150,129,110)(10,151,130,111)(11,152,131,112)(12,153,132,113)(13,154,133,114)(14,155,134,115)(15,156,135,116)(16,157,136,117)(17,158,137,118)(18,159,138,119)(19,160,139,120)(20,141,140,101)(21,49,97,68)(22,50,98,69)(23,51,99,70)(24,52,100,71)(25,53,81,72)(26,54,82,73)(27,55,83,74)(28,56,84,75)(29,57,85,76)(30,58,86,77)(31,59,87,78)(32,60,88,79)(33,41,89,80)(34,42,90,61)(35,43,91,62)(36,44,92,63)(37,45,93,64)(38,46,94,65)(39,47,95,66)(40,48,96,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,101)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145), (1,142,121,102)(2,143,122,103)(3,144,123,104)(4,145,124,105)(5,146,125,106)(6,147,126,107)(7,148,127,108)(8,149,128,109)(9,150,129,110)(10,151,130,111)(11,152,131,112)(12,153,132,113)(13,154,133,114)(14,155,134,115)(15,156,135,116)(16,157,136,117)(17,158,137,118)(18,159,138,119)(19,160,139,120)(20,141,140,101)(21,49,97,68)(22,50,98,69)(23,51,99,70)(24,52,100,71)(25,53,81,72)(26,54,82,73)(27,55,83,74)(28,56,84,75)(29,57,85,76)(30,58,86,77)(31,59,87,78)(32,60,88,79)(33,41,89,80)(34,42,90,61)(35,43,91,62)(36,44,92,63)(37,45,93,64)(38,46,94,65)(39,47,95,66)(40,48,96,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,101),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,121),(69,122),(70,123),(71,124),(72,125),(73,126),(74,127),(75,128),(76,129),(77,130),(78,131),(79,132),(80,133),(81,146),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,153),(89,154),(90,155),(91,156),(92,157),(93,158),(94,159),(95,160),(96,141),(97,142),(98,143),(99,144),(100,145)], [(1,142,121,102),(2,143,122,103),(3,144,123,104),(4,145,124,105),(5,146,125,106),(6,147,126,107),(7,148,127,108),(8,149,128,109),(9,150,129,110),(10,151,130,111),(11,152,131,112),(12,153,132,113),(13,154,133,114),(14,155,134,115),(15,156,135,116),(16,157,136,117),(17,158,137,118),(18,159,138,119),(19,160,139,120),(20,141,140,101),(21,49,97,68),(22,50,98,69),(23,51,99,70),(24,52,100,71),(25,53,81,72),(26,54,82,73),(27,55,83,74),(28,56,84,75),(29,57,85,76),(30,58,86,77),(31,59,87,78),(32,60,88,79),(33,41,89,80),(34,42,90,61),(35,43,91,62),(36,44,92,63),(37,45,93,64),(38,46,94,65),(39,47,95,66),(40,48,96,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

C2×C4×C20 is a maximal subgroup of
C426Dic5  (C2×C20)⋊8C8  C2013M4(2)  C42.6Dic5  C42.7Dic5  C207(C4⋊C4)  (C2×C20)⋊10Q8  C424Dic5  C10.92(C4×D4)  C428Dic5  C429Dic5  C425Dic5  (C2×C4)⋊6D20  (C2×C42)⋊D5  C42.274D10  C42.276D10  C42.277D10

160 conjugacy classes

class 1 2A···2G4A···4X5A5B5C5D10A···10AB20A···20CR
order12···24···4555510···1020···20
size11···11···111111···11···1

160 irreducible representations

dim11111111
type+++
imageC1C2C2C4C5C10C10C20
kernelC2×C4×C20C4×C20C22×C20C2×C20C2×C42C42C22×C4C2×C4
# reps143244161296

Matrix representation of C2×C4×C20 in GL3(𝔽41) generated by

4000
010
0040
,
100
0400
009
,
3600
080
0040
G:=sub<GL(3,GF(41))| [40,0,0,0,1,0,0,0,40],[1,0,0,0,40,0,0,0,9],[36,0,0,0,8,0,0,0,40] >;

C2×C4×C20 in GAP, Magma, Sage, TeX

C_2\times C_4\times C_{20}
% in TeX

G:=Group("C2xC4xC20");
// GroupNames label

G:=SmallGroup(160,175);
// by ID

G=gap.SmallGroup(160,175);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-2,240,487]);
// Polycyclic

G:=Group<a,b,c|a^2=b^4=c^20=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

׿
×
𝔽