Extensions 1→N→G→Q→1 with N=C4 and Q=C5×D4

Direct product G=N×Q with N=C4 and Q=C5×D4
dρLabelID
D4×C2080D4xC20160,179

Semidirect products G=N:Q with N=C4 and Q=C5×D4
extensionφ:Q→Aut NdρLabelID
C41(C5×D4) = C5×C41D4φ: C5×D4/C20C2 ⊆ Aut C480C4:1(C5xD4)160,188
C42(C5×D4) = C5×C4⋊D4φ: C5×D4/C2×C10C2 ⊆ Aut C480C4:2(C5xD4)160,182

Non-split extensions G=N.Q with N=C4 and Q=C5×D4
extensionφ:Q→Aut NdρLabelID
C4.1(C5×D4) = C5×D16φ: C5×D4/C20C2 ⊆ Aut C4802C4.1(C5xD4)160,61
C4.2(C5×D4) = C5×SD32φ: C5×D4/C20C2 ⊆ Aut C4802C4.2(C5xD4)160,62
C4.3(C5×D4) = C5×Q32φ: C5×D4/C20C2 ⊆ Aut C41602C4.3(C5xD4)160,63
C4.4(C5×D4) = C5×C4.4D4φ: C5×D4/C20C2 ⊆ Aut C480C4.4(C5xD4)160,185
C4.5(C5×D4) = C5×C4⋊Q8φ: C5×D4/C20C2 ⊆ Aut C4160C4.5(C5xD4)160,189
C4.6(C5×D4) = C10×D8φ: C5×D4/C20C2 ⊆ Aut C480C4.6(C5xD4)160,193
C4.7(C5×D4) = C10×SD16φ: C5×D4/C20C2 ⊆ Aut C480C4.7(C5xD4)160,194
C4.8(C5×D4) = C10×Q16φ: C5×D4/C20C2 ⊆ Aut C4160C4.8(C5xD4)160,195
C4.9(C5×D4) = C5×C4.D4φ: C5×D4/C2×C10C2 ⊆ Aut C4404C4.9(C5xD4)160,50
C4.10(C5×D4) = C5×C4.10D4φ: C5×D4/C2×C10C2 ⊆ Aut C4804C4.10(C5xD4)160,51
C4.11(C5×D4) = C5×D4⋊C4φ: C5×D4/C2×C10C2 ⊆ Aut C480C4.11(C5xD4)160,52
C4.12(C5×D4) = C5×Q8⋊C4φ: C5×D4/C2×C10C2 ⊆ Aut C4160C4.12(C5xD4)160,53
C4.13(C5×D4) = C5×C22⋊Q8φ: C5×D4/C2×C10C2 ⊆ Aut C480C4.13(C5xD4)160,183
C4.14(C5×D4) = C5×C8⋊C22φ: C5×D4/C2×C10C2 ⊆ Aut C4404C4.14(C5xD4)160,197
C4.15(C5×D4) = C5×C8.C22φ: C5×D4/C2×C10C2 ⊆ Aut C4804C4.15(C5xD4)160,198
C4.16(C5×D4) = C5×C22⋊C8central extension (φ=1)80C4.16(C5xD4)160,48
C4.17(C5×D4) = C5×C4≀C2central extension (φ=1)402C4.17(C5xD4)160,54
C4.18(C5×D4) = C5×C4⋊C8central extension (φ=1)160C4.18(C5xD4)160,55
C4.19(C5×D4) = C5×C8.C4central extension (φ=1)802C4.19(C5xD4)160,58
C4.20(C5×D4) = C5×C4○D8central extension (φ=1)802C4.20(C5xD4)160,196

׿
×
𝔽