Copied to
clipboard

G = C5×C4⋊D4order 160 = 25·5

Direct product of C5 and C4⋊D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C4⋊D4, C209D4, C42(C5×D4), C4⋊C42C10, (C2×C10)⋊4D4, (C2×D4)⋊2C10, C2.5(D4×C10), C221(C5×D4), (D4×C10)⋊11C2, C22⋊C43C10, (C22×C4)⋊4C10, C10.68(C2×D4), (C22×C20)⋊11C2, C23.8(C2×C10), C10.41(C4○D4), (C2×C10).76C23, (C2×C20).123C22, (C22×C10).27C22, C22.11(C22×C10), (C5×C4⋊C4)⋊11C2, C2.4(C5×C4○D4), (C2×C4).3(C2×C10), (C5×C22⋊C4)⋊11C2, SmallGroup(160,182)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C4⋊D4
C1C2C22C2×C10C22×C10D4×C10 — C5×C4⋊D4
C1C22 — C5×C4⋊D4
C1C2×C10 — C5×C4⋊D4

Generators and relations for C5×C4⋊D4
 G = < a,b,c,d | a5=b4=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 148 in 94 conjugacy classes, 48 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, C23, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C20, C20, C2×C10, C2×C10, C2×C10, C4⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, D4×C10, C5×C4⋊D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C2×C10, C4⋊D4, C5×D4, C22×C10, D4×C10, C5×C4○D4, C5×C4⋊D4

Smallest permutation representation of C5×C4⋊D4
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 66 26 56)(2 67 27 57)(3 68 28 58)(4 69 29 59)(5 70 30 60)(6 41 16 51)(7 42 17 52)(8 43 18 53)(9 44 19 54)(10 45 20 55)(11 46 76 36)(12 47 77 37)(13 48 78 38)(14 49 79 39)(15 50 80 40)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)
(1 36 21 41)(2 37 22 42)(3 38 23 43)(4 39 24 44)(5 40 25 45)(6 66 76 71)(7 67 77 72)(8 68 78 73)(9 69 79 74)(10 70 80 75)(11 61 16 56)(12 62 17 57)(13 63 18 58)(14 64 19 59)(15 65 20 60)(26 46 31 51)(27 47 32 52)(28 48 33 53)(29 49 34 54)(30 50 35 55)
(6 11)(7 12)(8 13)(9 14)(10 15)(16 76)(17 77)(18 78)(19 79)(20 80)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,66,26,56)(2,67,27,57)(3,68,28,58)(4,69,29,59)(5,70,30,60)(6,41,16,51)(7,42,17,52)(8,43,18,53)(9,44,19,54)(10,45,20,55)(11,46,76,36)(12,47,77,37)(13,48,78,38)(14,49,79,39)(15,50,80,40)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65), (1,36,21,41)(2,37,22,42)(3,38,23,43)(4,39,24,44)(5,40,25,45)(6,66,76,71)(7,67,77,72)(8,68,78,73)(9,69,79,74)(10,70,80,75)(11,61,16,56)(12,62,17,57)(13,63,18,58)(14,64,19,59)(15,65,20,60)(26,46,31,51)(27,47,32,52)(28,48,33,53)(29,49,34,54)(30,50,35,55), (6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,66,26,56)(2,67,27,57)(3,68,28,58)(4,69,29,59)(5,70,30,60)(6,41,16,51)(7,42,17,52)(8,43,18,53)(9,44,19,54)(10,45,20,55)(11,46,76,36)(12,47,77,37)(13,48,78,38)(14,49,79,39)(15,50,80,40)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65), (1,36,21,41)(2,37,22,42)(3,38,23,43)(4,39,24,44)(5,40,25,45)(6,66,76,71)(7,67,77,72)(8,68,78,73)(9,69,79,74)(10,70,80,75)(11,61,16,56)(12,62,17,57)(13,63,18,58)(14,64,19,59)(15,65,20,60)(26,46,31,51)(27,47,32,52)(28,48,33,53)(29,49,34,54)(30,50,35,55), (6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,66,26,56),(2,67,27,57),(3,68,28,58),(4,69,29,59),(5,70,30,60),(6,41,16,51),(7,42,17,52),(8,43,18,53),(9,44,19,54),(10,45,20,55),(11,46,76,36),(12,47,77,37),(13,48,78,38),(14,49,79,39),(15,50,80,40),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65)], [(1,36,21,41),(2,37,22,42),(3,38,23,43),(4,39,24,44),(5,40,25,45),(6,66,76,71),(7,67,77,72),(8,68,78,73),(9,69,79,74),(10,70,80,75),(11,61,16,56),(12,62,17,57),(13,63,18,58),(14,64,19,59),(15,65,20,60),(26,46,31,51),(27,47,32,52),(28,48,33,53),(29,49,34,54),(30,50,35,55)], [(6,11),(7,12),(8,13),(9,14),(10,15),(16,76),(17,77),(18,78),(19,79),(20,80),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)]])

C5×C4⋊D4 is a maximal subgroup of
C4⋊C4⋊Dic5  (C2×C10).D8  C4⋊D4.D5  (C2×D4).D10  D2016D4  D2017D4  (C2×C10)⋊D8  C4⋊D4⋊D5  Dic1017D4  C52C823D4  C4.(D4×D5)  C20⋊(C4○D4)  C10.682- 1+4  Dic1019D4  Dic1020D4  C4⋊C4.178D10  C10.342+ 1+4  C10.352+ 1+4  C10.362+ 1+4  C10.372+ 1+4  C4⋊C421D10  C10.382+ 1+4  C10.392+ 1+4  D2019D4  C10.402+ 1+4  C10.732- 1+4  D2020D4  C10.422+ 1+4  C10.432+ 1+4  C10.442+ 1+4  C10.452+ 1+4  C10.462+ 1+4  C10.1152+ 1+4  C10.472+ 1+4  C10.482+ 1+4  C10.742- 1+4  C5×D42

70 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B5C5D10A···10L10M···10T10U···10AB20A···20P20Q···20X
order12222222444444555510···1010···1010···1020···2020···20
size1111224422224411111···12···24···42···24···4

70 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C5C10C10C10C10D4D4C4○D4C5×D4C5×D4C5×C4○D4
kernelC5×C4⋊D4C5×C22⋊C4C5×C4⋊C4C22×C20D4×C10C4⋊D4C22⋊C4C4⋊C4C22×C4C2×D4C20C2×C10C10C4C22C2
# reps12113484412222888

Matrix representation of C5×C4⋊D4 in GL4(𝔽41) generated by

10000
01000
00180
00018
,
1000
0100
0001
00400
,
40100
39100
00400
0001
,
14000
04000
0010
00040
G:=sub<GL(4,GF(41))| [10,0,0,0,0,10,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,1,0,0,0,0,0,40,0,0,1,0],[40,39,0,0,1,1,0,0,0,0,40,0,0,0,0,1],[1,0,0,0,40,40,0,0,0,0,1,0,0,0,0,40] >;

C5×C4⋊D4 in GAP, Magma, Sage, TeX

C_5\times C_4\rtimes D_4
% in TeX

G:=Group("C5xC4:D4");
// GroupNames label

G:=SmallGroup(160,182);
// by ID

G=gap.SmallGroup(160,182);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-2,505,247,1514]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽