Copied to
clipboard

G = C5xC4wrC2order 160 = 25·5

Direct product of C5 and C4wrC2

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5xC4wrC2, D4:2C20, Q8:2C20, C42:3C10, C20.66D4, M4(2):4C10, (C5xD4):8C4, (C5xQ8):8C4, (C4xC20):10C2, C4.3(C2xC20), C4.17(C5xD4), C20.51(C2xC4), C4oD4.1C10, (C2xC10).22D4, C22.3(C5xD4), (C5xM4(2)):10C2, C10.37(C22:C4), (C2xC20).116C22, (C5xC4oD4).4C2, C2.8(C5xC22:C4), (C2xC4).19(C2xC10), SmallGroup(160,54)

Series: Derived Chief Lower central Upper central

C1C4 — C5xC4wrC2
C1C2C4C2xC4C2xC20C5xM4(2) — C5xC4wrC2
C1C2C4 — C5xC4wrC2
C1C20C2xC20 — C5xC4wrC2

Generators and relations for C5xC4wrC2
 G = < a,b,c,d | a5=b4=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b-1c >

Subgroups: 68 in 44 conjugacy classes, 24 normal (all characteristic)
Quotients: C1, C2, C4, C22, C5, C2xC4, D4, C10, C22:C4, C20, C2xC10, C4wrC2, C2xC20, C5xD4, C5xC22:C4, C5xC4wrC2
2C2
4C2
2C4
2C22
2C4
2C4
2C10
4C10
2D4
2C2xC4
2C2xC4
2C8
2C2xC10
2C20
2C20
2C20
2C2xC20
2C40
2C5xD4
2C2xC20

Smallest permutation representation of C5xC4wrC2
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 31 21 26)(2 32 22 27)(3 33 23 28)(4 34 24 29)(5 35 25 30)(6 16 36 11)(7 17 37 12)(8 18 38 13)(9 19 39 14)(10 20 40 15)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 31)(7 32)(8 33)(9 34)(10 35)(11 21)(12 22)(13 23)(14 24)(15 25)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 16 36 11)(7 17 37 12)(8 18 38 13)(9 19 39 14)(10 20 40 15)(26 31)(27 32)(28 33)(29 34)(30 35)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,31,21,26)(2,32,22,27)(3,33,23,28)(4,34,24,29)(5,35,25,30)(6,16,36,11)(7,17,37,12)(8,18,38,13)(9,19,39,14)(10,20,40,15), (1,16)(2,17)(3,18)(4,19)(5,20)(6,31)(7,32)(8,33)(9,34)(10,35)(11,21)(12,22)(13,23)(14,24)(15,25)(26,36)(27,37)(28,38)(29,39)(30,40), (1,21)(2,22)(3,23)(4,24)(5,25)(6,16,36,11)(7,17,37,12)(8,18,38,13)(9,19,39,14)(10,20,40,15)(26,31)(27,32)(28,33)(29,34)(30,35)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,31,21,26)(2,32,22,27)(3,33,23,28)(4,34,24,29)(5,35,25,30)(6,16,36,11)(7,17,37,12)(8,18,38,13)(9,19,39,14)(10,20,40,15), (1,16)(2,17)(3,18)(4,19)(5,20)(6,31)(7,32)(8,33)(9,34)(10,35)(11,21)(12,22)(13,23)(14,24)(15,25)(26,36)(27,37)(28,38)(29,39)(30,40), (1,21)(2,22)(3,23)(4,24)(5,25)(6,16,36,11)(7,17,37,12)(8,18,38,13)(9,19,39,14)(10,20,40,15)(26,31)(27,32)(28,33)(29,34)(30,35) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,31,21,26),(2,32,22,27),(3,33,23,28),(4,34,24,29),(5,35,25,30),(6,16,36,11),(7,17,37,12),(8,18,38,13),(9,19,39,14),(10,20,40,15)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,31),(7,32),(8,33),(9,34),(10,35),(11,21),(12,22),(13,23),(14,24),(15,25),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,16,36,11),(7,17,37,12),(8,18,38,13),(9,19,39,14),(10,20,40,15),(26,31),(27,32),(28,33),(29,34),(30,35)]])

C5xC4wrC2 is a maximal subgroup of   C42:D10  D4:4D20  M4(2).22D10  C42.196D10  M4(2):D10  D4.9D20  D4.10D20

70 conjugacy classes

class 1 2A2B2C4A4B4C···4G4H5A5B5C5D8A8B10A10B10C10D10E10F10G10H10I10J10K10L20A···20H20I···20AB20AC20AD20AE20AF40A···40H
order1222444···4455558810101010101010101010101020···2020···202020202040···40
size1124112···241111441111222244441···12···244444···4

70 irreducible representations

dim111111111111222222
type++++++
imageC1C2C2C2C4C4C5C10C10C10C20C20D4D4C4wrC2C5xD4C5xD4C5xC4wrC2
kernelC5xC4wrC2C4xC20C5xM4(2)C5xC4oD4C5xD4C5xQ8C4wrC2C42M4(2)C4oD4D4Q8C20C2xC10C5C4C22C1
# reps1111224444881144416

Matrix representation of C5xC4wrC2 in GL2(F41) generated by

370
037
,
90
032
,
032
90
,
400
032
G:=sub<GL(2,GF(41))| [37,0,0,37],[9,0,0,32],[0,9,32,0],[40,0,0,32] >;

C5xC4wrC2 in GAP, Magma, Sage, TeX

C_5\times C_4\wr C_2
% in TeX

G:=Group("C5xC4wrC2");
// GroupNames label

G:=SmallGroup(160,54);
// by ID

G=gap.SmallGroup(160,54);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-2,240,265,2403,1209,117,88]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C5xC4wrC2 in TeX

׿
x
:
Z
F
o
wr
Q
<