# Extensions 1→N→G→Q→1 with N=C32 and Q=C3×S3

Direct product G=N×Q with N=C32 and Q=C3×S3
dρLabelID
S3×C3354S3xC3^3162,51

Semidirect products G=N:Q with N=C32 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C321(C3×S3) = C3×C32⋊C6φ: C3×S3/C3S3 ⊆ Aut C32186C3^2:1(C3xS3)162,34
C322(C3×S3) = C3×He3⋊C2φ: C3×S3/C3S3 ⊆ Aut C3227C3^2:2(C3xS3)162,41
C323(C3×S3) = He34S3φ: C3×S3/C3C6 ⊆ Aut C3227C3^2:3(C3xS3)162,40
C324(C3×S3) = S3×He3φ: C3×S3/S3C3 ⊆ Aut C32186C3^2:4(C3xS3)162,35
C325(C3×S3) = C32×C3⋊S3φ: C3×S3/C32C2 ⊆ Aut C3218C3^2:5(C3xS3)162,52
C326(C3×S3) = C3×C33⋊C2φ: C3×S3/C32C2 ⊆ Aut C3254C3^2:6(C3xS3)162,53

Non-split extensions G=N.Q with N=C32 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C32.1(C3×S3) = C3≀S3φ: C3×S3/C3S3 ⊆ Aut C3293C3^2.1(C3xS3)162,10
C32.2(C3×S3) = He3.C6φ: C3×S3/C3S3 ⊆ Aut C32273C3^2.2(C3xS3)162,12
C32.3(C3×S3) = He3.2C6φ: C3×S3/C3S3 ⊆ Aut C32273C3^2.3(C3xS3)162,14
C32.4(C3×S3) = C3×C9⋊C6φ: C3×S3/C3S3 ⊆ Aut C32186C3^2.4(C3xS3)162,36
C32.5(C3×S3) = He3.4C6φ: C3×S3/C3S3 ⊆ Aut C32273C3^2.5(C3xS3)162,44
C32.6(C3×S3) = C33⋊C6φ: C3×S3/C3C6 ⊆ Aut C3296+C3^2.6(C3xS3)162,11
C32.7(C3×S3) = He3.S3φ: C3×S3/C3C6 ⊆ Aut C32276+C3^2.7(C3xS3)162,13
C32.8(C3×S3) = He3.2S3φ: C3×S3/C3C6 ⊆ Aut C32276+C3^2.8(C3xS3)162,15
C32.9(C3×S3) = He3.4S3φ: C3×S3/C3C6 ⊆ Aut C32276+C3^2.9(C3xS3)162,43
C32.10(C3×S3) = S3×3- 1+2φ: C3×S3/S3C3 ⊆ Aut C32186C3^2.10(C3xS3)162,37
C32.11(C3×S3) = C9×D9φ: C3×S3/C32C2 ⊆ Aut C32182C3^2.11(C3xS3)162,3
C32.12(C3×S3) = C32⋊C18φ: C3×S3/C32C2 ⊆ Aut C32186C3^2.12(C3xS3)162,4
C32.13(C3×S3) = C32⋊D9φ: C3×S3/C32C2 ⊆ Aut C3227C3^2.13(C3xS3)162,5
C32.14(C3×S3) = C9⋊C18φ: C3×S3/C32C2 ⊆ Aut C32186C3^2.14(C3xS3)162,6
C32.15(C3×S3) = C32×D9φ: C3×S3/C32C2 ⊆ Aut C3254C3^2.15(C3xS3)162,32
C32.16(C3×S3) = C3×C9⋊S3φ: C3×S3/C32C2 ⊆ Aut C3254C3^2.16(C3xS3)162,38
C32.17(C3×S3) = C9×C3⋊S3φ: C3×S3/C32C2 ⊆ Aut C3254C3^2.17(C3xS3)162,39
C32.18(C3×S3) = C33.S3φ: C3×S3/C32C2 ⊆ Aut C3227C3^2.18(C3xS3)162,42
C32.19(C3×S3) = S3×C3×C9central extension (φ=1)54C3^2.19(C3xS3)162,33

׿
×
𝔽