Copied to
clipboard

G = C3xC9:S3order 162 = 2·34

Direct product of C3 and C9:S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3xC9:S3, C32:3D9, C33.6S3, C3:(C3xD9), C9:3(C3xS3), (C3xC9):15C6, (C3xC9):10S3, (C32xC9):4C2, C32.9(C3:S3), C32.16(C3xS3), C3.1(C3xC3:S3), SmallGroup(162,38)

Series: Derived Chief Lower central Upper central

C1C3xC9 — C3xC9:S3
C1C3C32C3xC9C32xC9 — C3xC9:S3
C3xC9 — C3xC9:S3
C1C3

Generators and relations for C3xC9:S3
 G = < a,b,c,d | a3=b9=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 202 in 55 conjugacy classes, 22 normal (10 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C3xS3, C3:S3, C3xC9, C3xC9, C3xC9, C33, C3xD9, C9:S3, C3xC3:S3, C32xC9, C3xC9:S3
Quotients: C1, C2, C3, S3, C6, D9, C3xS3, C3:S3, C3xD9, C9:S3, C3xC3:S3, C3xC9:S3

Smallest permutation representation of C3xC9:S3
On 54 points
Generators in S54
(1 41 35)(2 42 36)(3 43 28)(4 44 29)(5 45 30)(6 37 31)(7 38 32)(8 39 33)(9 40 34)(10 53 22)(11 54 23)(12 46 24)(13 47 25)(14 48 26)(15 49 27)(16 50 19)(17 51 20)(18 52 21)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 38 29)(2 39 30)(3 40 31)(4 41 32)(5 42 33)(6 43 34)(7 44 35)(8 45 36)(9 37 28)(10 19 47)(11 20 48)(12 21 49)(13 22 50)(14 23 51)(15 24 52)(16 25 53)(17 26 54)(18 27 46)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(9 18)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)(25 30)(26 29)(27 28)(37 46)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)

G:=sub<Sym(54)| (1,41,35)(2,42,36)(3,43,28)(4,44,29)(5,45,30)(6,37,31)(7,38,32)(8,39,33)(9,40,34)(10,53,22)(11,54,23)(12,46,24)(13,47,25)(14,48,26)(15,49,27)(16,50,19)(17,51,20)(18,52,21), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,38,29)(2,39,30)(3,40,31)(4,41,32)(5,42,33)(6,43,34)(7,44,35)(8,45,36)(9,37,28)(10,19,47)(11,20,48)(12,21,49)(13,22,50)(14,23,51)(15,24,52)(16,25,53)(17,26,54)(18,27,46), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(9,18)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(37,46)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)>;

G:=Group( (1,41,35)(2,42,36)(3,43,28)(4,44,29)(5,45,30)(6,37,31)(7,38,32)(8,39,33)(9,40,34)(10,53,22)(11,54,23)(12,46,24)(13,47,25)(14,48,26)(15,49,27)(16,50,19)(17,51,20)(18,52,21), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,38,29)(2,39,30)(3,40,31)(4,41,32)(5,42,33)(6,43,34)(7,44,35)(8,45,36)(9,37,28)(10,19,47)(11,20,48)(12,21,49)(13,22,50)(14,23,51)(15,24,52)(16,25,53)(17,26,54)(18,27,46), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(9,18)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(37,46)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47) );

G=PermutationGroup([[(1,41,35),(2,42,36),(3,43,28),(4,44,29),(5,45,30),(6,37,31),(7,38,32),(8,39,33),(9,40,34),(10,53,22),(11,54,23),(12,46,24),(13,47,25),(14,48,26),(15,49,27),(16,50,19),(17,51,20),(18,52,21)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,38,29),(2,39,30),(3,40,31),(4,41,32),(5,42,33),(6,43,34),(7,44,35),(8,45,36),(9,37,28),(10,19,47),(11,20,48),(12,21,49),(13,22,50),(14,23,51),(15,24,52),(16,25,53),(17,26,54),(18,27,46)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(9,18),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31),(25,30),(26,29),(27,28),(37,46),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47)]])

C3xC9:S3 is a maximal subgroup of
C3xS3xD9  C32:5D18  C9:S3:C9  C32:D27  (C3xC9):C18  C9:S3:3C9  C3.2(C9:D9)  C32:2D27  (C3xC9):5D9  (C3xC9):6D9  C33.D9  He3:2D9  3- 1+2:D9  C9:(S3xC9)  C92:3S3  C92:3C6  He3:3D9  C92:9C6  C33.5D9  C33:6D9  He3:4D9  He3.(C3:S3)  C3:(He3:S3)  (C32xC9).S3  C3wrC3:S3  C9oHe3:3S3
C3xC9:S3 is a maximal quotient of
C33:D9  C92:4S3  C92:3C6  He3:3D9  C92:9C6  C33.5D9  He3.5D9

45 conjugacy classes

class 1  2 3A3B3C···3N6A6B9A···9AA
order12333···3669···9
size127112···227272···2

45 irreducible representations

dim1111222222
type+++++
imageC1C2C3C6S3S3C3xS3D9C3xS3C3xD9
kernelC3xC9:S3C32xC9C9:S3C3xC9C3xC9C33C9C32C32C3
# reps11223169218

Matrix representation of C3xC9:S3 in GL4(F19) generated by

11000
01100
00110
00011
,
5000
0400
00110
0007
,
1000
0100
00110
0007
,
0100
1000
0001
0010
G:=sub<GL(4,GF(19))| [11,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[5,0,0,0,0,4,0,0,0,0,11,0,0,0,0,7],[1,0,0,0,0,1,0,0,0,0,11,0,0,0,0,7],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C3xC9:S3 in GAP, Magma, Sage, TeX

C_3\times C_9\rtimes S_3
% in TeX

G:=Group("C3xC9:S3");
// GroupNames label

G:=SmallGroup(162,38);
// by ID

G=gap.SmallGroup(162,38);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,992,282,723,2704]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^9=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<