Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C10

Direct product G=N×Q with N=C2×C8 and Q=C10
dρLabelID
C22×C40160C2^2xC40160,190

Semidirect products G=N:Q with N=C2×C8 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1C10 = C5×C22⋊C8φ: C10/C5C2 ⊆ Aut C2×C880(C2xC8):1C10160,48
(C2×C8)⋊2C10 = C5×D4⋊C4φ: C10/C5C2 ⊆ Aut C2×C880(C2xC8):2C10160,52
(C2×C8)⋊3C10 = C10×D8φ: C10/C5C2 ⊆ Aut C2×C880(C2xC8):3C10160,193
(C2×C8)⋊4C10 = C5×C4○D8φ: C10/C5C2 ⊆ Aut C2×C8802(C2xC8):4C10160,196
(C2×C8)⋊5C10 = C10×SD16φ: C10/C5C2 ⊆ Aut C2×C880(C2xC8):5C10160,194
(C2×C8)⋊6C10 = C10×M4(2)φ: C10/C5C2 ⊆ Aut C2×C880(C2xC8):6C10160,191
(C2×C8)⋊7C10 = C5×C8○D4φ: C10/C5C2 ⊆ Aut C2×C8802(C2xC8):7C10160,192

Non-split extensions G=N.Q with N=C2×C8 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2×C8).1C10 = C5×Q8⋊C4φ: C10/C5C2 ⊆ Aut C2×C8160(C2xC8).1C10160,53
(C2×C8).2C10 = C5×C4⋊C8φ: C10/C5C2 ⊆ Aut C2×C8160(C2xC8).2C10160,55
(C2×C8).3C10 = C5×C2.D8φ: C10/C5C2 ⊆ Aut C2×C8160(C2xC8).3C10160,57
(C2×C8).4C10 = C10×Q16φ: C10/C5C2 ⊆ Aut C2×C8160(C2xC8).4C10160,195
(C2×C8).5C10 = C5×C8.C4φ: C10/C5C2 ⊆ Aut C2×C8802(C2xC8).5C10160,58
(C2×C8).6C10 = C5×C4.Q8φ: C10/C5C2 ⊆ Aut C2×C8160(C2xC8).6C10160,56
(C2×C8).7C10 = C5×C8⋊C4φ: C10/C5C2 ⊆ Aut C2×C8160(C2xC8).7C10160,47
(C2×C8).8C10 = C5×M5(2)φ: C10/C5C2 ⊆ Aut C2×C8802(C2xC8).8C10160,60

׿
×
𝔽