Copied to
clipboard

G = C5×C8○D4order 160 = 25·5

Direct product of C5 and C8○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C8○D4, D4.C20, Q8.C20, M4(2)⋊5C10, C20.54C23, C40.30C22, C40(C5×D4), C40(C5×Q8), (C2×C8)⋊7C10, (C2×C40)⋊15C2, C4.5(C2×C20), C8.7(C2×C10), (C5×D4).3C4, (C5×Q8).3C4, C20.53(C2×C4), C4○D4.3C10, C40(C5×M4(2)), C2.7(C22×C20), C22.1(C2×C20), (C5×M4(2))⋊11C2, C10.48(C22×C4), C4.12(C22×C10), (C2×C20).128C22, C40(C5×C4○D4), (C5×C4○D4).6C2, (C2×C10).28(C2×C4), (C2×C4).24(C2×C10), SmallGroup(160,192)

Series: Derived Chief Lower central Upper central

C1C2 — C5×C8○D4
C1C2C4C20C40C2×C40 — C5×C8○D4
C1C2 — C5×C8○D4
C1C40 — C5×C8○D4

Generators and relations for C5×C8○D4
 G = < a,b,c,d | a5=b8=d2=1, c2=b4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b4c >

Subgroups: 68 in 62 conjugacy classes, 56 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, Q8, C10, C10, C2×C8, M4(2), C4○D4, C20, C20, C2×C10, C8○D4, C40, C40, C2×C20, C5×D4, C5×Q8, C2×C40, C5×M4(2), C5×C4○D4, C5×C8○D4
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, C22×C4, C20, C2×C10, C8○D4, C2×C20, C22×C10, C22×C20, C5×C8○D4

Smallest permutation representation of C5×C8○D4
On 80 points
Generators in S80
(1 63 71 23 31)(2 64 72 24 32)(3 57 65 17 25)(4 58 66 18 26)(5 59 67 19 27)(6 60 68 20 28)(7 61 69 21 29)(8 62 70 22 30)(9 74 50 34 46)(10 75 51 35 47)(11 76 52 36 48)(12 77 53 37 41)(13 78 54 38 42)(14 79 55 39 43)(15 80 56 40 44)(16 73 49 33 45)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 35 5 39)(2 36 6 40)(3 37 7 33)(4 38 8 34)(9 66 13 70)(10 67 14 71)(11 68 15 72)(12 69 16 65)(17 77 21 73)(18 78 22 74)(19 79 23 75)(20 80 24 76)(25 53 29 49)(26 54 30 50)(27 55 31 51)(28 56 32 52)(41 61 45 57)(42 62 46 58)(43 63 47 59)(44 64 48 60)
(1 39)(2 40)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 65)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(41 61)(42 62)(43 63)(44 64)(45 57)(46 58)(47 59)(48 60)

G:=sub<Sym(80)| (1,63,71,23,31)(2,64,72,24,32)(3,57,65,17,25)(4,58,66,18,26)(5,59,67,19,27)(6,60,68,20,28)(7,61,69,21,29)(8,62,70,22,30)(9,74,50,34,46)(10,75,51,35,47)(11,76,52,36,48)(12,77,53,37,41)(13,78,54,38,42)(14,79,55,39,43)(15,80,56,40,44)(16,73,49,33,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,35,5,39)(2,36,6,40)(3,37,7,33)(4,38,8,34)(9,66,13,70)(10,67,14,71)(11,68,15,72)(12,69,16,65)(17,77,21,73)(18,78,22,74)(19,79,23,75)(20,80,24,76)(25,53,29,49)(26,54,30,50)(27,55,31,51)(28,56,32,52)(41,61,45,57)(42,62,46,58)(43,63,47,59)(44,64,48,60), (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,65)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60)>;

G:=Group( (1,63,71,23,31)(2,64,72,24,32)(3,57,65,17,25)(4,58,66,18,26)(5,59,67,19,27)(6,60,68,20,28)(7,61,69,21,29)(8,62,70,22,30)(9,74,50,34,46)(10,75,51,35,47)(11,76,52,36,48)(12,77,53,37,41)(13,78,54,38,42)(14,79,55,39,43)(15,80,56,40,44)(16,73,49,33,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,35,5,39)(2,36,6,40)(3,37,7,33)(4,38,8,34)(9,66,13,70)(10,67,14,71)(11,68,15,72)(12,69,16,65)(17,77,21,73)(18,78,22,74)(19,79,23,75)(20,80,24,76)(25,53,29,49)(26,54,30,50)(27,55,31,51)(28,56,32,52)(41,61,45,57)(42,62,46,58)(43,63,47,59)(44,64,48,60), (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,65)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(41,61)(42,62)(43,63)(44,64)(45,57)(46,58)(47,59)(48,60) );

G=PermutationGroup([[(1,63,71,23,31),(2,64,72,24,32),(3,57,65,17,25),(4,58,66,18,26),(5,59,67,19,27),(6,60,68,20,28),(7,61,69,21,29),(8,62,70,22,30),(9,74,50,34,46),(10,75,51,35,47),(11,76,52,36,48),(12,77,53,37,41),(13,78,54,38,42),(14,79,55,39,43),(15,80,56,40,44),(16,73,49,33,45)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,35,5,39),(2,36,6,40),(3,37,7,33),(4,38,8,34),(9,66,13,70),(10,67,14,71),(11,68,15,72),(12,69,16,65),(17,77,21,73),(18,78,22,74),(19,79,23,75),(20,80,24,76),(25,53,29,49),(26,54,30,50),(27,55,31,51),(28,56,32,52),(41,61,45,57),(42,62,46,58),(43,63,47,59),(44,64,48,60)], [(1,39),(2,40),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,65),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(41,61),(42,62),(43,63),(44,64),(45,57),(46,58),(47,59),(48,60)]])

C5×C8○D4 is a maximal subgroup of
C40.92D4  C40.70C23  D4.3D20  D4.4D20  D4.5D20  C40.93D4  C40.50D4  C20.72C24  D4.11D20  D4.12D20  D4.13D20
C5×C8○D4 is a maximal quotient of
D4×C40  Q8×C40

100 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D8A8B8C8D8E···8J10A10B10C10D10E···10P20A···20H20I···20T40A···40P40Q···40AN
order1222244444555588888···81010101010···1020···2020···2040···4040···40
size1122211222111111112···211112···21···12···21···12···2

100 irreducible representations

dim11111111111122
type++++
imageC1C2C2C2C4C4C5C10C10C10C20C20C8○D4C5×C8○D4
kernelC5×C8○D4C2×C40C5×M4(2)C5×C4○D4C5×D4C5×Q8C8○D4C2×C8M4(2)C4○D4D4Q8C5C1
# reps133162412124248416

Matrix representation of C5×C8○D4 in GL2(𝔽41) generated by

100
010
,
30
03
,
139
140
,
139
040
G:=sub<GL(2,GF(41))| [10,0,0,10],[3,0,0,3],[1,1,39,40],[1,0,39,40] >;

C5×C8○D4 in GAP, Magma, Sage, TeX

C_5\times C_8\circ D_4
% in TeX

G:=Group("C5xC8oD4");
// GroupNames label

G:=SmallGroup(160,192);
// by ID

G=gap.SmallGroup(160,192);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-2,240,764,88]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=d^2=1,c^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽