Copied to
clipboard

G = C10×M4(2)  order 160 = 25·5

Direct product of C10 and M4(2)

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×M4(2), C4014C22, C23.3C20, C20.53C23, (C2×C8)⋊6C10, C84(C2×C10), (C2×C40)⋊14C2, (C2×C4).6C20, C4.10(C2×C20), (C2×C20).26C4, C20.68(C2×C4), C2.6(C22×C20), (C22×C10).8C4, C22.6(C2×C20), (C22×C4).6C10, (C22×C20).16C2, C10.47(C22×C4), C4.11(C22×C10), (C2×C20).127C22, (C2×C10).43(C2×C4), (C2×C4).33(C2×C10), SmallGroup(160,191)

Series: Derived Chief Lower central Upper central

C1C2 — C10×M4(2)
C1C2C4C20C40C5×M4(2) — C10×M4(2)
C1C2 — C10×M4(2)
C1C2×C20 — C10×M4(2)

Generators and relations for C10×M4(2)
 G = < a,b,c | a10=b8=c2=1, ab=ba, ac=ca, cbc=b5 >

Subgroups: 76 in 68 conjugacy classes, 60 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C10, C2×C8, M4(2), C22×C4, C20, C20, C2×C10, C2×C10, C2×C10, C2×M4(2), C40, C2×C20, C2×C20, C22×C10, C2×C40, C5×M4(2), C22×C20, C10×M4(2)
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, M4(2), C22×C4, C20, C2×C10, C2×M4(2), C2×C20, C22×C10, C5×M4(2), C22×C20, C10×M4(2)

Smallest permutation representation of C10×M4(2)
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 20 50 38 70 28 52 79)(2 11 41 39 61 29 53 80)(3 12 42 40 62 30 54 71)(4 13 43 31 63 21 55 72)(5 14 44 32 64 22 56 73)(6 15 45 33 65 23 57 74)(7 16 46 34 66 24 58 75)(8 17 47 35 67 25 59 76)(9 18 48 36 68 26 60 77)(10 19 49 37 69 27 51 78)
(11 29)(12 30)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)(31 72)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 71)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,20,50,38,70,28,52,79)(2,11,41,39,61,29,53,80)(3,12,42,40,62,30,54,71)(4,13,43,31,63,21,55,72)(5,14,44,32,64,22,56,73)(6,15,45,33,65,23,57,74)(7,16,46,34,66,24,58,75)(8,17,47,35,67,25,59,76)(9,18,48,36,68,26,60,77)(10,19,49,37,69,27,51,78), (11,29)(12,30)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,71)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,20,50,38,70,28,52,79)(2,11,41,39,61,29,53,80)(3,12,42,40,62,30,54,71)(4,13,43,31,63,21,55,72)(5,14,44,32,64,22,56,73)(6,15,45,33,65,23,57,74)(7,16,46,34,66,24,58,75)(8,17,47,35,67,25,59,76)(9,18,48,36,68,26,60,77)(10,19,49,37,69,27,51,78), (11,29)(12,30)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,71) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,20,50,38,70,28,52,79),(2,11,41,39,61,29,53,80),(3,12,42,40,62,30,54,71),(4,13,43,31,63,21,55,72),(5,14,44,32,64,22,56,73),(6,15,45,33,65,23,57,74),(7,16,46,34,66,24,58,75),(8,17,47,35,67,25,59,76),(9,18,48,36,68,26,60,77),(10,19,49,37,69,27,51,78)], [(11,29),(12,30),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28),(31,72),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,71)]])

C10×M4(2) is a maximal subgroup of
C40.D4  M4(2)⋊Dic5  C20.33C42  (C2×C40)⋊C4  C23.9D20  C20.34C42  M4(2)⋊4Dic5  C20.51C42  Dic55M4(2)  C20.51(C4⋊C4)  C23.46D20  C23.47D20  C20.37C42  C23.Dic10  M4(2).Dic5  D108M4(2)  C40⋊D4  C4018D4  C4.89(C2×D20)  C23.48D20  M4(2).31D10  C23.49D20  C402D4  C403D4  C40.4D4  C23.20D20  C40.47C23  C40.9C23

100 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F5A5B5C5D8A···8H10A···10L10M···10T20A···20P20Q···20X40A···40AF
order12222244444455558···810···1010···1020···2020···2040···40
size11112211112211112···21···12···21···12···22···2

100 irreducible representations

dim11111111111122
type++++
imageC1C2C2C2C4C4C5C10C10C10C20C20M4(2)C5×M4(2)
kernelC10×M4(2)C2×C40C5×M4(2)C22×C20C2×C20C22×C10C2×M4(2)C2×C8M4(2)C22×C4C2×C4C23C10C2
# reps12416248164248416

Matrix representation of C10×M4(2) in GL3(𝔽41) generated by

4000
0250
0025
,
3200
0939
0432
,
4000
010
0940
G:=sub<GL(3,GF(41))| [40,0,0,0,25,0,0,0,25],[32,0,0,0,9,4,0,39,32],[40,0,0,0,1,9,0,0,40] >;

C10×M4(2) in GAP, Magma, Sage, TeX

C_{10}\times M_4(2)
% in TeX

G:=Group("C10xM4(2)");
// GroupNames label

G:=SmallGroup(160,191);
// by ID

G=gap.SmallGroup(160,191);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-2,240,985,88]);
// Polycyclic

G:=Group<a,b,c|a^10=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations

׿
×
𝔽