Extensions 1→N→G→Q→1 with N=C21 and Q=C32

Direct product G=N×Q with N=C21 and Q=C32

Semidirect products G=N:Q with N=C21 and Q=C32
extensionφ:Q→Aut NdρLabelID
C21⋊C32 = C32×C7⋊C3φ: C32/C3C3 ⊆ Aut C2163C21:C3^2189,12

Non-split extensions G=N.Q with N=C21 and Q=C32
extensionφ:Q→Aut NdρLabelID
C21.1C32 = C9×C7⋊C3φ: C32/C3C3 ⊆ Aut C21633C21.1C3^2189,3
C21.2C32 = C63⋊C3φ: C32/C3C3 ⊆ Aut C21633C21.2C3^2189,4
C21.3C32 = C633C3φ: C32/C3C3 ⊆ Aut C21633C21.3C3^2189,5
C21.4C32 = C3×C7⋊C9φ: C32/C3C3 ⊆ Aut C21189C21.4C3^2189,6
C21.5C32 = C21.C32φ: C32/C3C3 ⊆ Aut C21633C21.5C3^2189,7
C21.6C32 = C7⋊He3φ: C32/C3C3 ⊆ Aut C21633C21.6C3^2189,8
C21.7C32 = C7×He3central extension (φ=1)633C21.7C3^2189,10
C21.8C32 = C7×3- 1+2central extension (φ=1)633C21.8C3^2189,11