Copied to
clipboard

G = C7⋊He3order 189 = 33·7

The semidirect product of C7 and He3 acting via He3/C32=C3

metabelian, supersoluble, monomial, 3-hyperelementary

Aliases: C7⋊He3, C21.6C32, C32⋊(C7⋊C3), (C3×C21)⋊2C3, (C3×C7⋊C3)⋊C3, C3.6(C3×C7⋊C3), SmallGroup(189,8)

Series: Derived Chief Lower central Upper central

C1C21 — C7⋊He3
C1C7C21C3×C7⋊C3 — C7⋊He3
C7C21 — C7⋊He3
C1C3C32

Generators and relations for C7⋊He3
 G = < a,b,c,d | a7=b3=c3=d3=1, ab=ba, ac=ca, dad-1=a4, bc=cb, dbd-1=bc-1, cd=dc >

3C3
21C3
21C3
21C3
7C32
7C32
7C32
3C7⋊C3
3C21
3C7⋊C3
3C7⋊C3
7He3

Character table of C7⋊He3

 class 13A3B3C3D3E3F3G3H3I3J7A7B21A21B21C21D21E21F21G21H21I21J21K21L21M21N21O21P
 size 11133212121212121333333333333333333
ρ111111111111111111111111111111    trivial
ρ2111ζ32ζ311ζ32ζ32ζ3ζ311ζ32ζ32ζ321ζ3ζ3ζ3ζ3ζ3ζ31ζ3211ζ32ζ32    linear of order 3
ρ311111ζ32ζ3ζ3ζ32ζ32ζ3111111111111111111    linear of order 3
ρ4111ζ3ζ3211ζ3ζ3ζ32ζ3211ζ3ζ3ζ31ζ32ζ32ζ32ζ32ζ32ζ321ζ311ζ3ζ3    linear of order 3
ρ5111ζ3ζ32ζ3ζ321ζ321ζ311ζ3ζ3ζ31ζ32ζ32ζ32ζ32ζ32ζ321ζ311ζ3ζ3    linear of order 3
ρ6111ζ32ζ3ζ32ζ31ζ31ζ3211ζ32ζ32ζ321ζ3ζ3ζ3ζ3ζ3ζ31ζ3211ζ32ζ32    linear of order 3
ρ7111ζ32ζ3ζ3ζ32ζ31ζ32111ζ32ζ32ζ321ζ3ζ3ζ3ζ3ζ3ζ31ζ3211ζ32ζ32    linear of order 3
ρ811111ζ3ζ32ζ32ζ3ζ3ζ32111111111111111111    linear of order 3
ρ9111ζ3ζ32ζ32ζ3ζ321ζ3111ζ3ζ3ζ31ζ32ζ32ζ32ζ32ζ32ζ321ζ311ζ3ζ3    linear of order 3
ρ103-3-3-3/2-3+3-3/20000000033000-3-3-3/2000000-3-3-3/20-3+3-3/2-3+3-3/200    complex lifted from He3
ρ113-3+3-3/2-3-3-3/20000000033000-3+3-3/2000000-3+3-3/20-3-3-3/2-3-3-3/200    complex lifted from He3
ρ1233333000000-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2    complex lifted from C7⋊C3
ρ1333333000000-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2    complex lifted from C7⋊C3
ρ14333-3+3-3/2-3-3-3/2000000-1+-7/2-1--7/2ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73-1+-7/2ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73-1--7/2ζ3ζ763ζ753ζ73-1+-7/2-1--7/2ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7    complex lifted from C3×C7⋊C3
ρ153-3+3-3/2-3-3-3/200000000-1--7/2-1+-7/23ζ763ζ737675ζ3ζ743ζ77273ζ743ζ72747ζ3ζ763ζ753ζ73ζ32ζ7532ζ73767332ζ7632ζ73767532ζ7232ζ77472ζ32ζ7632ζ757573ζ32ζ7432ζ772732ζ7432ζ72747ζ3ζ743ζ723ζ73ζ723ζ77472ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ3ζ763ζ757573ζ3ζ753ζ737673    complex faithful
ρ163-3+3-3/2-3-3-3/200000000-1+-7/2-1--7/23ζ723ζ77472ζ3ζ763ζ7575733ζ763ζ737675ζ3ζ743ζ723ζ7ζ32ζ7432ζ772732ζ7232ζ77472ζ32ζ7532ζ73767332ζ7432ζ72747ζ32ζ7632ζ75757332ζ7632ζ737675ζ3ζ763ζ753ζ73ζ3ζ753ζ737673ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ733ζ743ζ72747ζ3ζ743ζ7727    complex faithful
ρ173-3+3-3/2-3-3-3/200000000-1+-7/2-1--7/23ζ743ζ72747ζ3ζ753ζ737673ζ3ζ763ζ757573ζ3ζ743ζ723ζ732ζ7232ζ7747232ζ7432ζ7274732ζ7632ζ737675ζ32ζ7432ζ7727ζ32ζ7532ζ737673ζ32ζ7632ζ757573ζ3ζ763ζ753ζ733ζ763ζ737675ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ3ζ743ζ77273ζ723ζ77472    complex faithful
ρ183-3+3-3/2-3-3-3/200000000-1+-7/2-1--7/2ζ3ζ743ζ77273ζ763ζ737675ζ3ζ753ζ737673ζ3ζ743ζ723ζ732ζ7432ζ72747ζ32ζ7432ζ7727ζ32ζ7632ζ75757332ζ7232ζ7747232ζ7632ζ737675ζ32ζ7532ζ737673ζ3ζ763ζ753ζ73ζ3ζ763ζ757573ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ733ζ723ζ774723ζ743ζ72747    complex faithful
ρ19333-3-3-3/2-3+3-3/2000000-1--7/2-1+-7/2ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7-1--7/2ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7-1+-7/2ζ32ζ7432ζ7232ζ7-1--7/2-1+-7/2ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73    complex lifted from C3×C7⋊C3
ρ203-3-3-3/2-3+3-3/200000000-1+-7/2-1--7/232ζ7232ζ77472ζ32ζ7632ζ75757332ζ7632ζ737675ζ32ζ7432ζ7232ζ7ζ3ζ743ζ77273ζ723ζ77472ζ3ζ753ζ7376733ζ743ζ72747ζ3ζ763ζ7575733ζ763ζ737675ζ32ζ7632ζ7532ζ73ζ32ζ7532ζ737673ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ7332ζ7432ζ72747ζ32ζ7432ζ7727    complex faithful
ρ213-3-3-3/2-3+3-3/200000000-1+-7/2-1--7/2ζ32ζ7432ζ772732ζ7632ζ737675ζ32ζ7532ζ737673ζ32ζ7432ζ7232ζ73ζ743ζ72747ζ3ζ743ζ7727ζ3ζ763ζ7575733ζ723ζ774723ζ763ζ737675ζ3ζ753ζ737673ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ757573ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ7332ζ7232ζ7747232ζ7432ζ72747    complex faithful
ρ223-3-3-3/2-3+3-3/200000000-1+-7/2-1--7/232ζ7432ζ72747ζ32ζ7532ζ737673ζ32ζ7632ζ757573ζ32ζ7432ζ7232ζ73ζ723ζ774723ζ743ζ727473ζ763ζ737675ζ3ζ743ζ7727ζ3ζ753ζ737673ζ3ζ763ζ757573ζ32ζ7632ζ7532ζ7332ζ7632ζ737675ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ32ζ7432ζ772732ζ7232ζ77472    complex faithful
ρ233-3-3-3/2-3+3-3/200000000-1--7/2-1+-7/232ζ7632ζ737675ζ32ζ7432ζ772732ζ7432ζ72747ζ32ζ7632ζ7532ζ73ζ3ζ753ζ7376733ζ763ζ7376753ζ723ζ77472ζ3ζ763ζ757573ζ3ζ743ζ77273ζ743ζ72747ζ32ζ7432ζ7232ζ732ζ7232ζ77472ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ32ζ7632ζ757573ζ32ζ7532ζ737673    complex faithful
ρ243-3+3-3/2-3-3-3/200000000-1--7/2-1+-7/2ζ3ζ763ζ7575733ζ723ζ77472ζ3ζ743ζ7727ζ3ζ763ζ753ζ7332ζ7632ζ737675ζ32ζ7632ζ75757332ζ7432ζ72747ζ32ζ7532ζ73767332ζ7232ζ77472ζ32ζ7432ζ7727ζ3ζ743ζ723ζ73ζ743ζ72747ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ3ζ753ζ7376733ζ763ζ737675    complex faithful
ρ25333-3-3-3/2-3+3-3/2000000-1+-7/2-1--7/2ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73-1+-7/2ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73-1--7/2ζ32ζ7632ζ7532ζ73-1+-7/2-1--7/2ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7    complex lifted from C3×C7⋊C3
ρ263-3+3-3/2-3-3-3/200000000-1--7/2-1+-7/2ζ3ζ753ζ7376733ζ743ζ727473ζ723ζ77472ζ3ζ763ζ753ζ73ζ32ζ7632ζ757573ζ32ζ7532ζ737673ζ32ζ7432ζ772732ζ7632ζ73767532ζ7432ζ7274732ζ7232ζ77472ζ3ζ743ζ723ζ7ζ3ζ743ζ7727ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ73ζ763ζ737675ζ3ζ763ζ757573    complex faithful
ρ273-3-3-3/2-3+3-3/200000000-1--7/2-1+-7/2ζ32ζ7632ζ75757332ζ7232ζ77472ζ32ζ7432ζ7727ζ32ζ7632ζ7532ζ733ζ763ζ737675ζ3ζ763ζ7575733ζ743ζ72747ζ3ζ753ζ7376733ζ723ζ77472ζ3ζ743ζ7727ζ32ζ7432ζ7232ζ732ζ7432ζ72747ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ32ζ7532ζ73767332ζ7632ζ737675    complex faithful
ρ283-3-3-3/2-3+3-3/200000000-1--7/2-1+-7/2ζ32ζ7532ζ73767332ζ7432ζ7274732ζ7232ζ77472ζ32ζ7632ζ7532ζ73ζ3ζ763ζ757573ζ3ζ753ζ737673ζ3ζ743ζ77273ζ763ζ7376753ζ743ζ727473ζ723ζ77472ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7727ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ732ζ7632ζ737675ζ32ζ7632ζ757573    complex faithful
ρ29333-3+3-3/2-3-3-3/2000000-1--7/2-1+-7/2ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7-1--7/2ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7-1+-7/2ζ3ζ743ζ723ζ7-1--7/2-1+-7/2ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73    complex lifted from C3×C7⋊C3

Smallest permutation representation of C7⋊He3
On 63 points
Generators in S63
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 48 27)(2 49 28)(3 43 22)(4 44 23)(5 45 24)(6 46 25)(7 47 26)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 20 13)(2 21 14)(3 15 8)(4 16 9)(5 17 10)(6 18 11)(7 19 12)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(2 3 5)(4 7 6)(8 10 14)(9 12 11)(15 17 21)(16 19 18)(22 31 42)(23 33 39)(24 35 36)(25 30 40)(26 32 37)(27 34 41)(28 29 38)(43 59 56)(44 61 53)(45 63 50)(46 58 54)(47 60 51)(48 62 55)(49 57 52)

G:=sub<Sym(63)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,48,27)(2,49,28)(3,43,22)(4,44,23)(5,45,24)(6,46,25)(7,47,26)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (2,3,5)(4,7,6)(8,10,14)(9,12,11)(15,17,21)(16,19,18)(22,31,42)(23,33,39)(24,35,36)(25,30,40)(26,32,37)(27,34,41)(28,29,38)(43,59,56)(44,61,53)(45,63,50)(46,58,54)(47,60,51)(48,62,55)(49,57,52)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,48,27)(2,49,28)(3,43,22)(4,44,23)(5,45,24)(6,46,25)(7,47,26)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (2,3,5)(4,7,6)(8,10,14)(9,12,11)(15,17,21)(16,19,18)(22,31,42)(23,33,39)(24,35,36)(25,30,40)(26,32,37)(27,34,41)(28,29,38)(43,59,56)(44,61,53)(45,63,50)(46,58,54)(47,60,51)(48,62,55)(49,57,52) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,48,27),(2,49,28),(3,43,22),(4,44,23),(5,45,24),(6,46,25),(7,47,26),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,20,13),(2,21,14),(3,15,8),(4,16,9),(5,17,10),(6,18,11),(7,19,12),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(2,3,5),(4,7,6),(8,10,14),(9,12,11),(15,17,21),(16,19,18),(22,31,42),(23,33,39),(24,35,36),(25,30,40),(26,32,37),(27,34,41),(28,29,38),(43,59,56),(44,61,53),(45,63,50),(46,58,54),(47,60,51),(48,62,55),(49,57,52)]])

C7⋊He3 is a maximal subgroup of   D7⋊He3  C7⋊He3⋊C2  C32⋊F7

Matrix representation of C7⋊He3 in GL3(𝔽43) generated by

010
001
11918
,
17312
21224
242814
,
3600
0360
0036
,
100
184242
010
G:=sub<GL(3,GF(43))| [0,0,1,1,0,19,0,1,18],[17,2,24,31,12,28,2,24,14],[36,0,0,0,36,0,0,0,36],[1,18,0,0,42,1,0,42,0] >;

C7⋊He3 in GAP, Magma, Sage, TeX

C_7\rtimes {\rm He}_3
% in TeX

G:=Group("C7:He3");
// GroupNames label

G:=SmallGroup(189,8);
// by ID

G=gap.SmallGroup(189,8);
# by ID

G:=PCGroup([4,-3,-3,-3,-7,97,867]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^3=c^3=d^3=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^4,b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C7⋊He3 in TeX
Character table of C7⋊He3 in TeX

׿
×
𝔽