Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C7⋊C3

Direct product G=N×Q with N=C3 and Q=C3×C7⋊C3
dρLabelID
C32×C7⋊C363C3^2xC7:C3189,12


Non-split extensions G=N.Q with N=C3 and Q=C3×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×C7⋊C3) = C9×C7⋊C3central extension (φ=1)633C3.1(C3xC7:C3)189,3
C3.2(C3×C7⋊C3) = C3×C7⋊C9central extension (φ=1)189C3.2(C3xC7:C3)189,6
C3.3(C3×C7⋊C3) = C63⋊C3central stem extension (φ=1)633C3.3(C3xC7:C3)189,4
C3.4(C3×C7⋊C3) = C633C3central stem extension (φ=1)633C3.4(C3xC7:C3)189,5
C3.5(C3×C7⋊C3) = C21.C32central stem extension (φ=1)633C3.5(C3xC7:C3)189,7
C3.6(C3×C7⋊C3) = C7⋊He3central stem extension (φ=1)633C3.6(C3xC7:C3)189,8

׿
×
𝔽